DOI QR코드

DOI QR Code

각종 버섯류로부터 안지오텐신 전환효소 저해제의 탐색

Screening of Mushrooms Having Angiotensin I-Converting Enzyme Inhibitor

  • 이대형 (배재대학교 유전공학과.바이오의약연구센타) ;
  • 김재호 (배재대학교 유전공학과.바이오의약연구센타) ;
  • 정종천 (농업과학기술원) ;
  • 공원식 (농업과학기술원) ;
  • 유영복 (농업과학기술원) ;
  • 박정식 (농업과학기술원) ;
  • 유창현 (농업과학기술원) ;
  • 이종수 (배재대학교 유전공학과.바이오의약연구센타)
  • Lee, Dae-Hyoung (Department of Genetic Engineering and Bio-medicinal Resource Research Center, Paichai University) ;
  • Kim, Jae-Ho (Department of Genetic Engineering and Bio-medicinal Resource Research Center, Paichai University) ;
  • Cheong, Jong-Chun (National Institute of Agricultural Science and Technology) ;
  • Gong, Won-Shik (National Institute of Agricultural Science and Technology) ;
  • Yoo, Young-Bok (National Institute of Agricultural Science and Technology) ;
  • Park, Jeong-Sik (National Institute of Agricultural Science and Technology) ;
  • Yoo, Chang-Hyun (National Institute of Agricultural Science and Technology) ;
  • Lee, Jong-Soo (Department of Genetic Engineering and Bio-medicinal Resource Research Center, Paichai University)
  • 발행 : 2003.12.30

초록

항고혈압 효능이 우수하며 부작용이 없는 고혈압 예방 제품을 개발하고자 농업과학기술원에서 분양 받은 52종의 버섯을 대상으로 일반성분, 추출 수율, 그리고 ACE 저해활성을 조사하여 활성이 우수한 버섯을 선정한 다음 ACE 저해물질의 추출 최적조건을 검토하였다. 시료 버섯은 $7.1{\sim}56.5%$의 조단백질과 $0.2{\sim}4.4%$의 조지방 및 $30.3{\sim}86.6%$의 탄수화물을 각각 함유하고 있었으며 비늘버섯 ASI 24027 자실체의 물 추출물 수율이 68%로 제일 높았다. 그러나 ACE 저해활성은 비늘 버섯 ASI 24012 균주의 자실체를 물 추출로부터 얻은 추출물($IC_{50}$: 0.45 mg)에서 가장 높았다. 그리고 이 버섯의 ACE 저해물질 최적추출조건은 자실체 분말을 물로 $30^{\circ}C$에서 1시간 추출했을때 가장 많이 용출 되었으며 이때 ACE 저해활성도도 67.6%($IC_{50}$: 0.20 mg)로 가장 높았다.

Extracts from 52 samples of mushrooms were prepared by using water, ethanol and methanol, and then yields and angiotensin I-converting enzyme(ACE) inhibitory activity were investigated. Sample mushrooms contained crude proteins of $7.1{\sim}56.5%$, curde lipids of $0.2{\sim}4.4%$ and carbohydrates of $30.3{\sim}86.6%$. Among 52 samples, the water extract from fruiting body of Pholiota spp. ASI 24027 showed the highest extraction yield of 68%. Water extract of Pholiota spp. ASI 24012 fruiting body had potential ACE inhibitory activity of 66%. The optimal extraction condition of the ACE inhibitor from the fruiting bodyies of Pholiota spp. ASI 24012 was In water at $30^{\circ}C$ for 1 hr and ACE inhibitory activity was 67.6% on the condition with 0.2 mg of $IC_{50}$.

키워드

참고문헌

  1. 한국수산학회지 v.26 수산발효식품 중의 angiotensin-I 전환효소 저해제의 특성. 1. 멸치 젓갈 중의 angiotensin-I 전환효소 저해제의특성 김선봉;이태기;박영범;염동민;김외경;변한석;박영호
  2. 한국식품과학회지 v.34 no.1 전통 민속주의 생리기능성 탐색 김재호;이대형;최신양;이종수
  3. 한국식품영양과학회지 v.25 담수어 열수추출물 및 효소가수분해 물의 angiotensin I converting enzyme 저해작용 김태진;윤호동;이두석;장영순;서상복;염도민
  4. 한국식품과학회지 v.25 기호음료 성분의 angiotensin 전환요소 저해작용 도정룔;김선봉;박용호;김동수
  5. Clinical endocrinology;고려의학 민헌기
  6. Mushroom science 성재모;유영복;차동열
  7. 약리학강의 이우주
  8. 한국식품과학회지 v.25 한국산 녹차로부터 분리한 flavan-2-ol 화합물의 angiotensin converting enzyme 저해효과 조영제;안붕전;최청
  9. 천연물화학 연구법 우원식
  10. 식품 중의 생체기능 조절물질 연구법 키와키시 순로
  11. Official methods of Analysis A.O.A.C.
  12. Chem. Phann. Bull. v.34 no.7 Angiotensin converting enzyme inhibitory triterpenes from Ganodenna lucidum Aiko, M.;Katsuaki, K.;Yoshinori, F.;Nobuo. I. https://doi.org/10.1248/cpb.34.3025
  13. Biochem. Biophys. Acta. v.309 Substrate specificity of hog plasma angiotensin-converting enzyme Angus, C.W.;Lee, H.J.;Wilson, J. B. https://doi.org/10.1016/0005-2744(73)90328-8
  14. Food Research International v.34 Angiotensin I-converting enzyme inhibitor from Grifola frondosa Choi, H.S.;Cho, H.Y.;Yang, H.C.;Ra, K.S.;Suh, H.J. https://doi.org/10.1016/S0963-9969(00)00149-6
  15. Biochemistry v.16 Design of potent competitive inhibitors of angiotensin converting enzyme: carboxyalkanoyl and mercapoalkanoyl amino acid Cushman, D.W.;Cheung, H.S.;Sabo, E.F.;Ondetti, M.A. https://doi.org/10.1021/bi00644a014
  16. Circ. Res. v.34 Hydrolysis of bradykinin by angiotensin-converting enzyme Dorer, F.E.;Kahn, J.R.;Lentz, K.E.;Levine, M.;Skeggs, L.T. https://doi.org/10.1161/01.RES.34.6.824
  17. Clin. Chim. Acta v.31 Carboxycathepsin-A key regulatory component of two physiological systems involved in regulation of blood pressure Elisseeva, Y.E.;Orekhovich, V.N.;Pavlikhina, L.N.;Alexeenko, L.P. https://doi.org/10.1016/0009-8981(71)90412-8
  18. J. Antibiotics v.45 no.1 Antibiotics from bASI diomycetes XLI, Clavicoronic acid, a novel inhibitor of reverse transcriptase from Clavicorona pyxidate Erkel, G.;Anke, T. https://doi.org/10.7164/antibiotics.45.29
  19. Review of medical physiology Ganong, W.F.
  20. Nippon Shokuhin Kogyo Gakkashi v.61 Angiotensin I converting enzyme inhibiting activity of tea components Hara, Y.;Matsuzaki, T.;Suzuki, T.
  21. J. Nutr. Sci. Vitaminol v.34 Dietary effect of Ganodenna lucidum: Mushroom on blood pressure and lipid levels in spontaneously hypertentive rats(SHR) Kabir, Y.;Kimura, S.;Tamura, T.
  22. J. Natural Products v.50 Inhibitory effects of various flavonoids isolated from leaves of persimmon on angiotensin converting enzyme activity Kameda, K.;Takaku, T.;Okuda, H.;Kimura, Y. https://doi.org/10.1021/np50052a017
  23. Bioi. Pharm. Bull. v.16 Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis Kiho, T.;Hui, J.;Yamane, A.;Ukai, S. https://doi.org/10.1248/bpb.16.1291
  24. Korea J. Food & Nutrition v.9 no.2 Functionality and inhibitory effect of soybean hydrolysate on angiotensin converting enzyme Kim, Y.S.;Suh, H.J.;Chung, S.H.;Kim, Y.S.;Lee, S.D.
  25. Biochem. Biophys. Res. Comm. v.155 Isolation of angiotensin-converting enzyme inhibitor from tuna muscle Kohama, Y.;Matsumoto, S.;Oka, H.;Teramoto, T.;Okabe, M.;Mimura, T. https://doi.org/10.1016/S0006-291X(88)81089-1
  26. Kor. J. Food Sci. Technol. v.32 Physicochemical characteristics of Agartache rugosa O. Kuntze extracts by extraction condition Lee, B.Y.;Hwang, J.B.
  27. Agric. Bioi. Chem. v.53 Angiotensin I converting enzyme inhibitor derived from Ficus carica Maruyama, S.;Miyoshi, S.;Tanaka, H. https://doi.org/10.1271/bbb1961.53.2763
  28. Agric. BioI. Chem. v.49 Structure and hypotensive effect of flavonoid glycosides in citrus unshiu peelings Matsubara, Y.;Kumamoto, H.;Iizuka, Y.;Murakami, T.;Okamoto, K.;Miyake, H.;Yokoi, K. https://doi.org/10.1271/bbb1961.49.909
  29. Food Rev. International. v.59 no.4 Antitumor activity of heteroglycans from niohshimeji, Tricholoma giganteum Mizuno, T.;Kinoshit, T.;Zhung, C.;Ito, H.;Mayuzumi, Y.
  30. Biochemistry v.30 Cordycepin analogues of 2'5'-oligoadenylate inhibitor of human immunodeficiency virus infection via inhibition of reverse transcriptase Muller, W.E.G.B.E.;Weiler, R.;Charubala, W.;Schroder, H.C. https://doi.org/10.1021/bi00222a004
  31. Kor. J. Microbial. Biotechnol. v.31 Peptide inhibitors for angiotensin I converting enzyme from com gluten digests Oh, K.S.;Lee, D.G.;Hong, J.U.;Sung, H.C.
  32. Biosci. Biotech. Biochem. v.59 Angiotensin I converting enzyme inhibitory activities of various fermented foods Okamoto, A.;Hanagata, H.;Matsumoto, E.;Kawamura, Y.;Koizumi, Y.;Yanagida, F. https://doi.org/10.1271/bbb.59.1147
  33. Science v.196 Design of specific inhibitors of angiotensin Ondetti, M.A.;Rubin, B.;Cushman, D.W. https://doi.org/10.1126/science.191908
  34. Food & Biotechnol. v.5 Screening of angiotensin I-converting enzyme inhibitors in cereals and legumes Rhyu, M.R.;Nam, Y.J.;Lee, H.Y.
  35. Nippon Nogeikagaku Kaishi v.66 Angiotensin I converting enzyme inhibitors in sake and its byproducts Saito, Y.;Nakamura, K.;Kawato, A.;Imayasu, S. https://doi.org/10.1271/nogeikagaku1924.66.1081
  36. Biosci. Biotech. Biochem. v.58 Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees Saito, Y.;Wanezaki, K.;Kawato, A.;Imayasu, S. https://doi.org/10.1271/bbb.58.1767
  37. Annu. Rev. Biochem. v.45 Angiotensin-converting enzyme and the regulation of vasoactive peptides Soffer, R.L. https://doi.org/10.1146/annurev.bi.45.070176.000445
  38. Medical Information v.2 Hypertension complication Yoo, W.H.

피인용 문헌

  1. Antihypertensive Activity and Anti-gout Activity of Mushroom Sarcodon aspratus vol.39, pp.1, 2011, https://doi.org/10.4489/KJM.2011.39.1.053
  2. Characterization of a novel β-hydroxy-β-methyl glutaryl coenzyme A reductase-inhibitor from the mushroom,Pholiota adiposa vol.12, pp.6, 2007, https://doi.org/10.1007/BF02931077
  3. Production of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor fromMalassezia pachydermatisG-14 vol.33, pp.3, 2005, https://doi.org/10.4489/MYCO.2005.33.3.142
  4. Screening New Antihypertensive Angiotensin I-Converting Enzyme Inhibitor -Producing Yeast and Optimization of Production Condition vol.39, pp.3, 2011, https://doi.org/10.4489/KJM.2010.39.3.194
  5. Screening of a New Fibrinolytic Substances-Producing Yeast vol.39, pp.3, 2011, https://doi.org/10.4489/KJM.2010.39.3.227
  6. Extraction and Characteristics of Anti-obesity Lipase Inhibitor fromPhellinus linteus vol.38, pp.1, 2010, https://doi.org/10.4489/MYCO.2010.38.1.052
  7. Screening and Physiological Functionality of Hypsizygus marmoreus (White Cultivar) Fruiting Body vol.39, pp.3, 2011, https://doi.org/10.4489/KJM.2010.39.3.185
  8. Effects ofLycii fructusand Edible Mushroom,Pholiota adiposa, on the Quality and Angiotensin I-Converting Enzyme Inhibitory Activity of Korean Traditional Rice Wine vol.20, pp.2, 2006, https://doi.org/10.1080/08905430600709610
  9. Characterisation of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from Pleurotus cornucopiae vol.127, pp.2, 2011, https://doi.org/10.1016/j.foodchem.2011.01.010