References
- Sanders, L.M., NcRae, G.I., Vitale, K.M. and Kell, B.A. Controlled delivery of an LHRH analogue from biodegradable injectable microspheres. J. Control Rel. 2: 187-195 (1985) https://doi.org/10.1016/0168-3659(85)90044-6
- Lee, K.C., Lee, Y.J., Kim, W.B. and Cha, C.Y. Monoclonal antibody-based targeting of methotrexate-loaded microspheres. Int. J. Pharmacol. 59: 27-33 (1990) https://doi.org/10.1016/0378-5173(90)90061-8
- Lim, F. Biomedical Applications of Microencapsulation, pp. 137-154. CRC press, Boca Raton, FL, USA (1984)
- Wan, J., Gordon, J.B., Muirhead, K., Hickey, M.W. and Coventry, M.J. Incorporation of nisin in micro-particles of calcium alginate. Lett. Appl. Microbiol. 24: 153-158 (1997) https://doi.org/10.1046/j.1472-765X.1997.00294.x
- Lee, K. Y. and Heo, T.R. Particle size effects in buffer system using calcium carbonate bead immobilized with alginate for the cultivation of Bifidobacterium. Korean J. Food Sci. Technol. 30: 425-433 (1998)
- Saito, K., Murat, T. and Mori, T. Encapsulation of carthamin and safflor yellow B in calcium alginate beads-technical stabilization of the color. Int. J. Food Sci. Technol. 29: 715-719 (1995)
- Laca, A., Garcia, LA., Argueso, F. and Diaz, M. Protein diffusion in alginate beads monitored by confocal microscopy. The application of wavelets for data reconstruction and analysis. J. Ind. Microbiol. Biotechnol. 23: 155-165 (1999) https://doi.org/10.1038/sj.jim.2900703
- Amsden, B. and Turner, N. Diffusion characteristics of calcium alginate gels. Biotechnol. Bioeng. 65: 605-610 (1999) https://doi.org/10.1002/(SICI)1097-0290(19991205)65:5<605::AID-BIT14>3.0.CO;2-C
- Jen, A.C., Wake, M.C. and Milcos, A.G. Hydrogels for cell immobilization. Biotechnol. Bioeng. 50: 357-364 (1996) https://doi.org/10.1002/(SICI)1097-0290(19960520)50:4<357::AID-BIT2>3.0.CO;2-K
- Li, R.H., Altreuter, D.H. and Gentile, F.T. Transport characterization of hydrogel matrices for cell encapsulation. Biotechnol. Bioeng. 50: 365-373 (1996) https://doi.org/10.1002/(SICI)1097-0290(19960520)50:4<365::AID-BIT3>3.0.CO;2-J
- Pileni, M.P. Structure and Reactivity in Reverse Micelles. Elsevier, Amsterdam, Netherlands (1989)
- Walde, P., Giuliani, A.M., Boicelli, C.A. and Luisi, P.L. Phospholipid-based reverse micelles. Chem. Phys. Lipids 53: 265-288 (1994) https://doi.org/10.1016/0009-3084(90)90026-N
- Battistel, E. and Luisi, P.L. Kinetics of water pool formation in AOT/hydrocarbon reverse micelles. J. Colloid Interface Sci. 128: 7-14(1989) https://doi.org/10.1016/0021-9797(89)90379-2
- Martinek, K., Klyachko, N.L., Khmelnitsky, Y.L. and Levashov, A.V. Micellar enzymology: its relation to membranology. Biochim. Biophys. Acta 981: 161-172 (1989) https://doi.org/10.1016/0005-2736(89)90024-2
- Andrade, S., Kamenskaya, E.O., Levashove, A.V., Moura, J.J.G. Encapsulation of flavodoxin in reverse micelles. Biochem. Biophys. Res. Comm. 234: 651-654 (1997) https://doi.org/10.1006/bbrc.1997.6525
-
Marcozzi, G., Corrrea, N., Luixi, P.L. and Caselli, M. Protein extraction by reverse micelles-a study of the factors affecting the forward and backward transfer of
$\alpha$ -chymotrypsin and its activity. Biotechnol. Bioeng. 38: 1239-1246 (1991) https://doi.org/10.1002/bit.260381017 - Gupta, R.B., Han, C.H. and Johnston, K.P. Recovery of proteins and amino acids from reverse micelles by dehydration with molecular sieves. Biotechnol. Bioeng. 44: 830-836 (1994) https://doi.org/10.1002/bit.260440708
-
Chang, Q., Liu, H. and Chen, J. Extraction of lysozyme,
$\alpha$ -chymotrypsin, and pepsin into reverse micelles formed using an anionic surfactant, isooctane, and water. Enzyme Microb. Technol. 16: 970-973 (1994) https://doi.org/10.1016/0141-0229(94)90006-X - Jarudilokkul, S., Poppenborg, L.H. and Stuckey, D.C. Backward extraction of reverse micellar encapsulated proteins using a counterionic surfactant. Biotechnol. Bioeng. 62: 593-601 (1999) https://doi.org/10.1002/(SICI)1097-0290(19990305)62:5<593::AID-BIT11>3.0.CO;2-Z
- Walde, P., Han, D. and Luisi, P.L. Spectroscopic and kinetic studies of lipases solubilized in reversed micelles. Biochemistry 32: 4029-4034 (1993) https://doi.org/10.1021/bi00066a025
- Silber, J.J., Biasutti, A., Abuin, E. and Lissi, E. Interaction of small molecules with reverse micelles. Adv. Colloid Interface Sci. 82: 189-252 (1999) https://doi.org/10.1016/S0001-8686(99)00018-4
- Adair, J.H., Li, T., Kido, T., Havey, K., Moon, J., Mecholsky, J., Morrone, A., Talham, D.R., Ludwig, M.H. and Wang, L. Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles. Material Sci. Eng. R23: 139-242 (1998)
- Han, D., Yi, O.S. and Shin, H.K. Antioxidative effect of ascorbic acid solubilized in oils via reversed micelles. J. Food Sci. 55: 247-249 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb06062.x
- Scartazzini, R. and Luisi, P.L. Organogels from lecithins. J. Phys. Chem. 92: 829-833 (1988) https://doi.org/10.1021/j100314a047
- Kan-No, K., Asano, H. and Kitahara, A. Study on the size of reversed micelles of anionic and cationic surfactants. Prog. Colloid Polym. 68: 20-24 (1983) https://doi.org/10.1007/BFb0114135
- Sunamoto, J., Hamada, T., Seto, T. and Yamamoto, S. Microscopic evaluation of surfactant-water interaction in apolar media. Bull. Chem. Soc. Japan 53: 583-589 (1980) https://doi.org/10.1246/bcsj.53.583