Formation of Micron-sized Alginate Microparticles Using Reverse Micelles

역미셀을 이용한 마이크론 수준의 초미세 알긴산 입자 제조

  • Published : 2003.10.01

Abstract

Micron-sized alginate microparticles were formed in the water pools of reverse micelles (RM) composed of hexane/aerosol OT(AOT)/water through the gelation process between sodium alginate and $CaCl_2$. The size of microparticles formed increased as Wo (the molar ratio of water to surfactant) increased from 5 to 10. The microparticles became aggregated at Wo of 15, and stable RM no longer existed at Wo of 20. The characteristics of microparticles prepared at Wo of 5 and 10 showed significant differences in area, maximum diameter, minimum diameter, mean diameter, and perimeter of microparticles (p<0.05). However, there was no difference in appearance and roundness between the microparticles These results indicate that the size of microparticles are affected by Wo, whereas the overall shape of microparticles are not substantially influenced within Wo values used for stable RM formation. The mean diameter of microparticles was about $2{\sim}2.5\;{\mu}m$ and much smaller $(70{\sim}1,000\;times)$ than the reported sue of alginate microparticles formed in an aqueous medium.

Hexane/aerosol OT(AOT)/물로 구성된 역미셀의 water pool내에서 알긴산나트륨과 염화칼슘의 반응성을 이용하여 알긴산 조미세입자의 제조를 시도하였다. 주사전자현미경(SEM) 관측결과 미세한 입자들이 형성됨을 확인하였으며 이는 알긴산나트륨 함유 water pool과 염화칼슘 함유 water pool이 상호 접촉에 의해 내부물질의 교환이 가능함을 의미한다. 역미셀의 water pool 크기에 영향을 주는 유화제(AOT)에 대한 물의 몰농도 비율인 Wo 값을 5에서 10으로 증가함에 따라 미세입자의 크기가 유의적으로 증가하였으며 제조된 미세입자간의 입도특성을 비교한 결과, 각 입자의 표면적, 최장식경(max diameter), 최단직경(min diameter), 평균직경(mean diameter). 그리고 각 입자의 둘레 길이는 Wo 값이 증가함에 따라 유의적으로 증가하였다(p<0.05). Wo 값이 15 이상에서는 입자간 응집이 발생하였으며 Wo 값이 20인 경우에는 안정한 역미셀의 형성이 불가능하였다. 제조된 입자의 평균직경은 Wo=5에서 $2.08\;{\mu}m$이었으며 10인 경우 $2.66\;{\mu}m$으로 나타났으며 이는 기존에 보고 된 알긴산 입자의 크기에 비하여 약 $70{\sim}1000$배 가량 작은 수준이었다. 한편, 입자의 구형도는 분석된 Wo 구간에서 유의적인 자이를 보이지 않음으로써 역미셀에 의해 형성되는 입자의 외부형태는 안정한 역미셀을 형성하는 Wo 구간에서는 크게 변화하지 않는 것으로 판단된다.

Keywords

References

  1. Sanders, L.M., NcRae, G.I., Vitale, K.M. and Kell, B.A. Controlled delivery of an LHRH analogue from biodegradable injectable microspheres. J. Control Rel. 2: 187-195 (1985) https://doi.org/10.1016/0168-3659(85)90044-6
  2. Lee, K.C., Lee, Y.J., Kim, W.B. and Cha, C.Y. Monoclonal antibody-based targeting of methotrexate-loaded microspheres. Int. J. Pharmacol. 59: 27-33 (1990) https://doi.org/10.1016/0378-5173(90)90061-8
  3. Lim, F. Biomedical Applications of Microencapsulation, pp. 137-154. CRC press, Boca Raton, FL, USA (1984)
  4. Wan, J., Gordon, J.B., Muirhead, K., Hickey, M.W. and Coventry, M.J. Incorporation of nisin in micro-particles of calcium alginate. Lett. Appl. Microbiol. 24: 153-158 (1997) https://doi.org/10.1046/j.1472-765X.1997.00294.x
  5. Lee, K. Y. and Heo, T.R. Particle size effects in buffer system using calcium carbonate bead immobilized with alginate for the cultivation of Bifidobacterium. Korean J. Food Sci. Technol. 30: 425-433 (1998)
  6. Saito, K., Murat, T. and Mori, T. Encapsulation of carthamin and safflor yellow B in calcium alginate beads-technical stabilization of the color. Int. J. Food Sci. Technol. 29: 715-719 (1995)
  7. Laca, A., Garcia, LA., Argueso, F. and Diaz, M. Protein diffusion in alginate beads monitored by confocal microscopy. The application of wavelets for data reconstruction and analysis. J. Ind. Microbiol. Biotechnol. 23: 155-165 (1999) https://doi.org/10.1038/sj.jim.2900703
  8. Amsden, B. and Turner, N. Diffusion characteristics of calcium alginate gels. Biotechnol. Bioeng. 65: 605-610 (1999) https://doi.org/10.1002/(SICI)1097-0290(19991205)65:5<605::AID-BIT14>3.0.CO;2-C
  9. Jen, A.C., Wake, M.C. and Milcos, A.G. Hydrogels for cell immobilization. Biotechnol. Bioeng. 50: 357-364 (1996) https://doi.org/10.1002/(SICI)1097-0290(19960520)50:4<357::AID-BIT2>3.0.CO;2-K
  10. Li, R.H., Altreuter, D.H. and Gentile, F.T. Transport characterization of hydrogel matrices for cell encapsulation. Biotechnol. Bioeng. 50: 365-373 (1996) https://doi.org/10.1002/(SICI)1097-0290(19960520)50:4<365::AID-BIT3>3.0.CO;2-J
  11. Pileni, M.P. Structure and Reactivity in Reverse Micelles. Elsevier, Amsterdam, Netherlands (1989)
  12. Walde, P., Giuliani, A.M., Boicelli, C.A. and Luisi, P.L. Phospholipid-based reverse micelles. Chem. Phys. Lipids 53: 265-288 (1994) https://doi.org/10.1016/0009-3084(90)90026-N
  13. Battistel, E. and Luisi, P.L. Kinetics of water pool formation in AOT/hydrocarbon reverse micelles. J. Colloid Interface Sci. 128: 7-14(1989) https://doi.org/10.1016/0021-9797(89)90379-2
  14. Martinek, K., Klyachko, N.L., Khmelnitsky, Y.L. and Levashov, A.V. Micellar enzymology: its relation to membranology. Biochim. Biophys. Acta 981: 161-172 (1989) https://doi.org/10.1016/0005-2736(89)90024-2
  15. Andrade, S., Kamenskaya, E.O., Levashove, A.V., Moura, J.J.G. Encapsulation of flavodoxin in reverse micelles. Biochem. Biophys. Res. Comm. 234: 651-654 (1997) https://doi.org/10.1006/bbrc.1997.6525
  16. Marcozzi, G., Corrrea, N., Luixi, P.L. and Caselli, M. Protein extraction by reverse micelles-a study of the factors affecting the forward and backward transfer of $\alpha$-chymotrypsin and its activity. Biotechnol. Bioeng. 38: 1239-1246 (1991) https://doi.org/10.1002/bit.260381017
  17. Gupta, R.B., Han, C.H. and Johnston, K.P. Recovery of proteins and amino acids from reverse micelles by dehydration with molecular sieves. Biotechnol. Bioeng. 44: 830-836 (1994) https://doi.org/10.1002/bit.260440708
  18. Chang, Q., Liu, H. and Chen, J. Extraction of lysozyme, $\alpha$-chymotrypsin, and pepsin into reverse micelles formed using an anionic surfactant, isooctane, and water. Enzyme Microb. Technol. 16: 970-973 (1994) https://doi.org/10.1016/0141-0229(94)90006-X
  19. Jarudilokkul, S., Poppenborg, L.H. and Stuckey, D.C. Backward extraction of reverse micellar encapsulated proteins using a counterionic surfactant. Biotechnol. Bioeng. 62: 593-601 (1999) https://doi.org/10.1002/(SICI)1097-0290(19990305)62:5<593::AID-BIT11>3.0.CO;2-Z
  20. Walde, P., Han, D. and Luisi, P.L. Spectroscopic and kinetic studies of lipases solubilized in reversed micelles. Biochemistry 32: 4029-4034 (1993) https://doi.org/10.1021/bi00066a025
  21. Silber, J.J., Biasutti, A., Abuin, E. and Lissi, E. Interaction of small molecules with reverse micelles. Adv. Colloid Interface Sci. 82: 189-252 (1999) https://doi.org/10.1016/S0001-8686(99)00018-4
  22. Adair, J.H., Li, T., Kido, T., Havey, K., Moon, J., Mecholsky, J., Morrone, A., Talham, D.R., Ludwig, M.H. and Wang, L. Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles. Material Sci. Eng. R23: 139-242 (1998)
  23. Han, D., Yi, O.S. and Shin, H.K. Antioxidative effect of ascorbic acid solubilized in oils via reversed micelles. J. Food Sci. 55: 247-249 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb06062.x
  24. Scartazzini, R. and Luisi, P.L. Organogels from lecithins. J. Phys. Chem. 92: 829-833 (1988) https://doi.org/10.1021/j100314a047
  25. Kan-No, K., Asano, H. and Kitahara, A. Study on the size of reversed micelles of anionic and cationic surfactants. Prog. Colloid Polym. 68: 20-24 (1983) https://doi.org/10.1007/BFb0114135
  26. Sunamoto, J., Hamada, T., Seto, T. and Yamamoto, S. Microscopic evaluation of surfactant-water interaction in apolar media. Bull. Chem. Soc. Japan 53: 583-589 (1980) https://doi.org/10.1246/bcsj.53.583