Time-dependent Flow Properties of Mustard Paste

겨자 페이스트의 시간의존 유동특성

  • Lee, Jeong-Jin (Department of Food Science and Technology, Dongguk University) ;
  • Lee, Ji-Soo (Department of Food Science and Technology, Dongguk University) ;
  • Yoo, Byoung-Seung (Department of Food Science and Technology, Dongguk University)
  • Published : 2003.02.01

Abstract

Time-dependent flow properties of mustard pastes were measured at various total solid contents $(TS,\;18{\sim}30%)$ and shear rates $(15{\sim}25\;s^{-1})$ using a Haake concentric cylinderical viscometer. Experimental data of the stress decay with time of shearing were fitted to three mathematical models proposed by Weltman, Figoni and Shoemaker, and Hahn. Time-dependent flow behaviour of mustard paste increased with increase in TS, but was found to vary in the range of shear rate investigated. Time-dependent model of Weltman was found to be most applicable $(average\;R^2=0.96)$ for mustard paste. Shear stresses for structure breakdown increased with increase in TS, while the structure breakdown rate decreased.

겨자 페이스트의 시간의존성을 관찰하기 위해 총고형분 함량(18, 21, 24, 27, 30%)과 전단속도$(15,\;20,\;25\;s^{-1})$를 달리하여 시간-전단응력 변화가 분석되었으며, 이들 데이터들은 Figoni 및 Shoemaker 모델, Weltman 모델, Hahn 모델에 적용하여 정량적으로 평가되었다. 일정한 전단속도에서 겨자페이스트의 농도가 증가함에 따라 보다 높은 전단응력을 나타냈으며, 3종류의 모델식에서의 각 매개변수들은 농도에 따라 일정한 경향을 나타내어 겨자 페이스트의 시간의존 유동 특성에는 다른 분산식품들과 마찬가지로 농도에 의해 크게 영향을 받음을 알 수 있었다. 그러나 일정 농도를 기준으로 전단속도에 따른 시간의존성 변화에서는 25%와 27%농도를 가진 시료를 제외하고는 각 매개변수 값들의 차이는 거의 없는 것으로 나타났다. 시간의존 유동특성 모델에 적용한 결과, Weltman 모델이 다른 모델식에 비해 가장 높은 결정계수$(R^2)$을 보여주고 있어 Weltman 모델식이 겨자 페이스트 시간의존성을 나타내는 가장 적합한 모델식임을 알 수 있었다.

Keywords

References

  1. Weltman, R. N. Breakdown of thixotropic structure as function of time. J. Appl. Phys. 14: 343-350 (1943) https://doi.org/10.1063/1.1714996
  2. Bhattacharya, S., Vasudha, N., and Murthy, K. S. K. Rheology of mustard paste: a controlled stress measurement. J. Food Eng. 41: 187-191 (1999) https://doi.org/10.1016/S0260-8774(99)00102-8
  3. Figoni, P. I. and Shoemaker, C. F. Review paper characterization of structure breakdown of foods from their flow properties. J. Texture Studies 12: 287-305 (1981) https://doi.org/10.1111/j.1745-4603.1981.tb00540.x
  4. Figoni, P. I. and Shoemaker, C. F. Time-dependent rheological behavior of food. Food Technol. 38(3): 110-112 (1984)
  5. Bhattacharya, S. Yield stress and time-dependent rheological properties of mango pulp. J. Food Sci. 64: 1029-1033 (1999) https://doi.org/10.1111/j.1365-2621.1999.tb12275.x
  6. O'Donnell, H. J. and Butler, F. Time-dependent viscosity of stirred yogurt. Part I: couette flow. J. Food Eng. 51: 249-254 (2002) https://doi.org/10.1016/S0260-8774(01)00064-4
  7. Ramos, A. M. and Ibarz, A. Thixotrophy of orange concentrate and quince puree. J. Texture Studies 29: 313-324 (1998) https://doi.org/10.1111/j.1745-4603.1998.tb00173.x
  8. Yoo, B. and Noh, W. S. Effect of fermentation temperature on rheological of traditional kochujang. J. Korean Soc. Food Sci Nutr. 29: 860-864 (2000)
  9. Figoni, P. I. and Shoemaker, C. F. Characterization of time dependent flow properties of mayonnaise under steady shear. J. Texture Studies 14: 431-442 (1983) https://doi.org/10.1111/j.1745-4603.1983.tb00360.x
  10. Jinescus, V. V. The rheology of suspensions. Int. Chem. Eng. 14: 397-420 (1973)
  11. Ha, S. K. and Choi, Y. H. Rheological characteristics and viscosity prediction models of tomato ketchup suspensions. Korean J. Food Sci. Technol. 20: 812-819 (1988)
  12. Yoo, B., Choi, W. S. and Ryu, Y. K. Flow properties of traditional kochujang: effect of fermentation time. J. Korean Soc. Food Sci. Nutr. 28: 554-558 (1999)
  13. Yoo, B. Rheological properties of traditional kochujang. Korean J. Food Sci. Technol. 35: 70-76 (2002)
  14. Alonso, M. L. and Zapico, J. Effect of storage on the rheological behaviour of baby foods. J. Texture Studies 27: 361-369 (1996) https://doi.org/10.1111/j.1745-4603.1996.tb00081.x
  15. Alonso, M. L., Larrode, O., and Zapico, J. Rheological behaviour of infant foods. J. Texture Studies 26: 193-202 (1995) https://doi.org/10.1111/j.1745-4603.1995.tb00793.x