Comparative Cytogenetic Characteristics and Physical Mapping of the 17S and 5S Ribosomal DNAs between Atractylodes japonica Koidz. and Atractylodes macrocephala Koidz.

  • Bang, Kyong-Hwan (Division of Industrial Crop, National Crop Experiment Station, RDA) ;
  • Koo, Dal-Hoe (Department of Biology, Chungnam National University) ;
  • Kim, Hong-Sig (Department of Plant Resources, Chungbuk National University) ;
  • Song, Beom-Heon (Department of Plant Resources, Chungbuk National University) ;
  • Cho, Yong-Gu (Department of Plant Resources, Chungbuk National University.) ;
  • Cho, Joon-Hyeong (Division of Industrial Crop, National Crop Experiment Station, RDA) ;
  • Bang, Jae-Wook (Department of Biology, Chungnam National University)
  • Published : 2003.11.30

Abstract

This study was carried out to compare chromosomal characteristics between Atractylodes japonica and A macrocephala. Cytogenetic analysis was conducted based on karyotype analysis and physical mapping using fluorescence in situ hybridization. As a result of karyotype analysis by feulgen staining, somatic chromosome numbers of A. japonica and A. macrocephala were 2n=24. The length. of the mitotic metaphase chromosomes of A. japonica ranged from $0.70\;to\;1.60{\mu}m$ with a total length. of $12.11{\mu}m$ and the homologous chromosome complement comprised six metacentrics, five submetacentrics and one subtelocentrics. On the other hand, the length of the mitotic metaphase chromosomes of A. macrocephala ranged from $0.90\;to\;2.35{\mu}m$ with a total length of $16.58{\mu}m$ and the homologous chromosome complement comprised seven metacentrics and five submetacentrics. The total length of A. japonica chromosomes was shorter than that of A. macrocephala, but A. japonica had one subtelocentrics (chromosomes 4) different from A. macrocepha1a. chromosomes. The F1SH technique using 17S and 5S rDNA was applied to metaphase chromosomes. The signals for 17S rDNA were detected on the telomeric regions of chromosomes 4 and 5 in both A japonica and A. macrocephala. The 5S rDNA signal was found in the short arm of chromosome 1.

Keywords

References

  1. Albino SM, Schwarzacher T (1992) In situ localization of two repetitive DNA sequences to surface-spread pachytene chromosomes of rye. Genome 35:551-559 https://doi.org/10.1139/g92-082
  2. Cuellar T, Orellana J, Belhassen E, Bella JL (1999) Chromosomal characterization and physical mapping of the 5S and the 18S5.8S- 25S ribosomal DNA in Helianthus argophyllus, with new data from Helianthus annuus. Genome 42:110-115 https://doi.org/10.1139/gen-42-1-110
  3. FedorffNV (1979) On spacers. Cell 16:697-710 https://doi.org/10.1016/0092-8674(79)90086-2
  4. Fuchs J, Kuhne M, Schubert I (1998) Assignment of linkage groups to tea chromosomes after karyotyping and gene mapping by fluorescent in situ hybridization. Chromosoma 107:272-276 https://doi.org/10.1007/s004120050308
  5. Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparation. Proc, Natl, Acad. Sci. 63:378-383 https://doi.org/10.1073/pnas.63.2.378
  6. Grurtdler P, Unfried I, Pascher K, Schweizer D (1991) rDNA intergenic region from Arabidopsis theliana: structural analysis, intraspecific variation and functional implications. J Mol. BioI. 221:1209-1222 https://doi.org/10.1016/0022-2836(91)90929-Z
  7. Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first ten years. Genome 37:717-725 https://doi.org/10.1139/g94-102
  8. John HA, Brrnstiel ML, Jones KW (1969) RNA-DNA hybrids at the cytological level. Nature 223:582-587 https://doi.org/10.1038/223582a0
  9. Kamisugi K, Nakayama S, Nakajima R, Ohtsubo H, Fukui K (1994) Physical mapping of the 5S ribosomal RNA genes on rice chromosome 11. Mol. Gen. Genet, 245:133-138
  10. Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol. Gen. Genet. 240:159-169 https://doi.org/10.1007/BF00277053
  11. Koo DH, Hur Y, Jin DC, Bang JW (2002) Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. Winter Long) using C-banding bicolor fluorescence in situ hybridization. Mol. Cells. 13:413-418
  12. Lapitan NLV (1992) Organization and evolution of higher plant nuclear genomes. Genome 35:171-181 https://doi.org/10.1139/g92-028
  13. Leitch IJ, Heslop-Harrison JS (1993) Physical mapping of four sites of 5S ribosomal DNA sequences and one site of the alpha-amylase 2 gene in barley. Genome 36:517-523 https://doi.org/10.1139/g93-071
  14. Levan A, Frekga K, Sandberg A (1964) Nomenclature for centromeric position in chromosomes. Hereditas 52:201-220 https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
  15. Mdntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635-640 https://doi.org/10.1139/g90-094
  16. Mukai Y, Nakahara H, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489-494 https://doi.org/10.1139/g93-067
  17. Phillips RL, McMullen MD, Enomoto S, Rubenstein I (1988) Ribosomal DNA in maize. In Gustafson, J P, and R. Appels (eds.). Chromosome Structure and Function; Impact of New Concepts. Plenum Press, New York. P. 201-214
  18. Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J: Hered, 76:78-81 https://doi.org/10.1093/oxfordjournals.jhered.a110049
  19. Sang Y, Liang GH (2000) Comparative physical mapping of the 18S-5.8S-26S rDNA in three Sorghum species. Genome 43:918-922 https://doi.org/10.1139/gen-43-5-918
  20. Schrader 0, Ahne R, Schubert I (1997) Karyotype analysis of Helianthus annuus after Giemsa banding and fluorescence in situ hybridization. Chromosome Res. 5:451-456 https://doi.org/10.1023/A:1018412912790
  21. Wanzenbock E, Schofer C, Schweizer D, Bachmair A (1997) Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. PlantJ 11:1007-1016 https://doi.org/10.1046/j.1365-313X.1997.11051007.x