Sphingolipids from Marine Organisms: A $Review^{\S}$

  • Muralidhar, P. (Dept. of Pharmaceutical Sciences, Andhra University) ;
  • Radhika, P. (Dept. of Pharmaceutical Sciences, Andhra University) ;
  • Krishna, N. (Dept. of Pharmaceutical Sciences, Andhra University) ;
  • Rao, D. Venkata (Dept. of Pharmaceutical Sciences, Andhra University) ;
  • Rao, Ch. Bheemasankara (School of Chemistry, Andhra University)
  • Published : 2003.09.01

Abstract

The sphingolipids isolated from marine organisms and their biological activities have been reviewed.

Keywords

References

  1. Abe, S., Araki, S., Satake, M., Fujiwara, S., Kon, K., and Ando, S., Structure of a triphosphonoglycosphingolipid containing Nacetylgalactosarnine 6 0 2 arninoethyl phosphonate in the nervous system of Aplysia kurodai. J.BioI.Chem., 266, 9939-9943 (1991)
  2. Abraham, S. P., Hoang, T. D., Alam, M., and Jones, E. B. G., Chemistry of the cytotoxic principles of the marine fungus Lignincola laevis. Pure Appl. Chem., 66,2391-2394 (1994) https://doi.org/10.1351/pac199466102391
  3. Agarwal, S. and Garg, G.S., Sphingolipid and sterols of the sponge Callyspongia spinossima. Indian J.Chem.,36B, 343346 (1997)
  4. Aiello, A., Fattorusso, E., Mangoni, A., and Menna, M., Sulcacerarnide, a novel triglycosylcerarnide from the marine ascidian Microcosmus sulcatus. Eur: J. Org. Chem., 6, 1047-1050 (2002)
  5. Akimoto, K., Natori, T., and Morita, M., Synthesis and stereochemistry of Agelasphin 9b. Tetrahedron Lett., 34, 5593-5596 (1993) https://doi.org/10.1016/S0040-4039(00)73890-1
  6. Anjaneyulu, V., and Radhika, P., A new sphingosine derivative from the soft coral Sinularia species of the Andaman and Nicobar Islands. Indian J.Chem., 37B, 621-624 (1998)
  7. Anjaneyulu, v., and Radhika, P., Two new sphingosine derivatives from Sinularia crassa Tixier Durivault of the Andaman and Nicobar Islands. Indian J.Chem., 38B, 457-460 (1999)
  8. Anjaneyulu, v., Subba Rao, P.v., and Radhika, P., A new sphingosine derivative and a new polyhydroxy steroidal glycoside from Sinularia gravis Tixier Durivault of the Andaman and Nicobar Islands. Indian J. Chem, 38B, 357-360 (1999)
  9. Araki, S., Abe, S., Ando, S., Fujii, N., and Satake, M., Isolation and characterization of a novel 2 arninoethylphosphonyl glycosphingolipids from the skin of the sea hare Aplysia kurodai. J.Biochem., 101, 145-149 (1987a)
  10. Araki, S., Abe, S., Ando, S., Kon, K., Fujiwara, N., and Satake, M., Structureof phosphonoglycosphingolipid containingpyruvylated galactose in nerve fibres of Aplysia kurodai., I.Biol.Chem., 264, 19922-19927 (1989)
  11. Araki, S., Abe, S., Odani, S., Ando, S., Fujii, N., and Satake, M.,Structure of a triphosphonopentasoylcerarnide containing 4 O methy1 N acetylg1ucosarnine from the skin of the sea hare Aplysia kurodai. J.BioI.Chem., 262, 14141-14145 (1987b)
  12. Araki, S., Abe, S., Satake, M., Hayashi, A., Kon, K, and Ando, S., Novel phosphonoglycosphingolipids containing pyruvylated galactose from the nervous system of Aplysia kurodai. Eur. J. Biochem., 198, 689- 695 (1991) https://doi.org/10.1111/j.1432-1033.1991.tb16068.x
  13. Araki, S., Abe, S., Yamada, S., Satake, M., Fujiwara, N., Kon, K, and Ando, S., Characterization of two novel pyruvylated glycosphingolipids containing 2'arninoethylphosphoryl (1-6) galactose from the nervous system of Aplysia kurodai. J.Biochem., 112,461- 466 (1992)
  14. Araki, S., Komai, Y, and Satake, M., A novel sphingophosphonoglycolipid containing 3 O ethylgalactose isolated from the skin of the marine gastropod Aplysia kurodai. J. Biochem., 87,503- 507 (1980)
  15. Araki, S., Satake, M., Ando, A., Hayashi, A., and Fujii, N., Characterization of a diphosphonopentaosylcerarnide containing 3-0-methylgalactose from the skin of Aplysia kurodai (sea hare). J. Biochem., 261, 5138 - 5144 (1986)
  16. Araki, S., Yamada, S., Abe, S., Waki, H., Kon, K, Itonori, S., Sugita, M., and Ando, S., Characterization of a novel triphosphonooctaosylcerarnide from the eggs of the sea hare, Aplysia kurodai. J. Biochem.,129, 93-100 (2001) https://doi.org/10.1093/oxfordjournals.jbchem.a002841
  17. Arao, K., Inagaki, M., and Higuchi, R., Constituents of crinoidea.1. Isolation and structure of inositolphosphocerarnide from the feather star Comanthus japonica. Chem.Pharm.Bull., 47, 687689 (1999) https://doi.org/10.1248/cpb.47.687
  18. Arao, K., Inagaki, M., and Higuchi, R., Constituents of Crinoidea. 2. Isolation and structure of the novel type gangliosides from the feather star Comanthus japonica. Chem.Pharm.Bull., 49, 695-698 (2001) https://doi.org/10.1248/cpb.49.695
  19. Asai, N., Fusetani, N., Matsunaga, S., and Sasaki, J., Sex pheromones of the hair crab Erimacrus isenbeckii. Part 1: Isolation and structures of novel cerarnides. Tetrahedron, 56, 9895-9899 (2000) https://doi.org/10.1016/S0040-4020(00)00959-5
  20. Babu, U. V, Bhandari, S. P. S., and Garg, H. S., Temnosides A and B, two new glycosphingolipids from the sea urchin Temnopleurus toreumaticus of the Indian Coast. J.Nat.Prod., 60, 732-734 (1997a) https://doi.org/10.1021/np960708k
  21. Babu, U. V, Bhandari, S. P. S., and Garg, H. S., Hariamide, a novel sulfated sphingolipid from a Zoanthus sp. of the Indian Coast. J. Nat. Prod., 60, 1307-1309 (1997b) https://doi.org/10.1021/np970267k
  22. Bano, S., Uddin, S., and Ahmed, V U., Marine natural products. Part XV. An acetylated derivative of a new N acylsphingosine from red alga Halymenia porphyroides. Planta Med., 56, 233-234 (1990) https://doi.org/10.1055/s-2006-960935
  23. Batrakov, S. G., Nikitin, D. I., Sheichenko V I., and Ruzhitsky, A. O., A novel sulfonic acid analogue of ceramide is the major extractable lipid of the gram negative marine bacterium Cyclobacterium marinus WHo Biochim. Biophys. Acta, 1391, 79-91 (1998) https://doi.org/10.1016/S0005-2760(97)00165-3
  24. Bheemasankararao, Ch. and Satyanarayana, Ch., A new sphingosine derivative from the red alga Halymenia durivilliae of Andaman and Nicobar Islands. Indian J.Chem., 33B, 97-98 (1994)
  25. Borbone, N., De Marino, S., Iorizzi, M., Zollo, E, Debitus, c, Ianaro, A., and Pisano, B., New glycosphingolipids from the marine sponge Aplysinella rhax and their potential as nitric oxide release inhibitors. Eur. J. Org.Chem., 4651-4656 (2001)
  26. Cafieri, E and Fattorusso, E., Variceramides, three new sphingolipids from the marine sponge Ircinia variabilis. Liebigs Ann.Chem., 1141-1142 (1990)
  27. Cafieri, E, Fattorusso, E., Mahajnah, Y, and Mangoni, A., Longiside, a novel digalactosylcerarnide from the Caribbean sponge Agelas longissima. Liebigs Ann. Chem., 1187-1189 (1994)
  28. Cafieri, E, Fattorusso, E., Mangoni, A., and Taglialatela-Scafati, O.., Glycolipids from Sponges, II Glycosyl cerarnide composition of the marine sponge Agelas longissima. Liebigs Ann., 1477-1481 (1995)
  29. Cafieri, E, Fattorusso, E., Mangoni, A., and Taglialatela-Scafati, O., Glycolipids from sponges. V.A novel tetraglycosylated sphingolipid from the marine sponge Agelas longissima. Gazz. Chim. Ital., 16,711-717 (1996)
  30. Carter, H. E., Glick, E, Norris, w., and Phillips, G. E., Structure of sphingosine. J. Biol. Chem., 142,449-453 (1942)
  31. Carter, H. E., Glick, E, Norris, w., and Phillips, G. E., Isolation of dihydrosphingosine from brain and spinal cord, J. Biol. Chem., 170, 285-289 (1947)
  32. Chakrabarty, M., Batabyal, A., Barna, A. K., and Patra, A., New cerarnides from the hypotensive extract of a sea anemone, Paracondylactis indicus. J.Nat.Prod., 57, 393-395 (1994) https://doi.org/10.1021/np50105a011
  33. Chebaane, K. and Guyot, M., Occurrence of erythro Docosasphinga4,8\dienine, as an ester, in Anemonia sulcata. Tetrahedron Lett., 27, 1495-1496 (1986) https://doi.org/10.1016/S0040-4039(00)84294-X
  34. Chekareva, N. V, Smimova, G. P., and Kochetkov, N. K, gangliosides of the holothurian Cucumaria japonica. Bioorg. Khim., 17, 398-402 (1991)
  35. Costantino, V, Fattorusso, E., Mangoni, A., Aknin, M., and Gaydou, E.M., Axicerarnide A and B, two novel tria. glycosylcerarnides from the marine sponge Axinella sp. Liebigs Ann.Chem., 1181-1185 (1994)
  36. Costantino, V, Fattorusso, E., and Mangoni, A., Glycolipids from Sponges, 1- Glycosyl ceramide composition of the marine sponge Agelas clathrodes. Liebigs Ann., 1471-1475 (1995a)
  37. Costantino, V, Fattorusso, E., and Mangoni, A., Glycolipids from Sponges, III. Glycosyl cerarnides from the marine sponge Agelas conifera. Liebigs Ann. 2133-2136 (1995b)
  38. Costantino, V, Fattorusso, E., Mangoni, A., Di Rosa, M., Ianaro, A., and Maffia, P., Glycolipids from sponges.IV Immunomodulating glycosyl cerarnides from the marine sponge Agelas dispar. Tetrahedron, 52, 1573-1578 (1996) https://doi.org/10.1016/0040-4020(95)00986-8
  39. Costantino, V,. Fattorusso, E., Mangoni, A., Di Rosa, M. and Ianaro, A., Glycolipids from Sponges. 6. Plakoside A and B, two unique prenylated glycosphingolipids with immunosuppressive activity from the marine sponge Plakortis simplex. J. Am. Chem. Soc., 119, 12465-12470 (1997) https://doi.org/10.1021/ja9727225
  40. Deng, S., Li, F., Tan, X., and Cheng, J., A new ceramide from gorgonian Isis sp. of the South China Sea. Tianran Chanwu Yanjiu YuKaifa; 6,32-35 (1994)
  41. Deng, S.Z., Tian, c.t., Xiao, D.I. and Wu, H.-M. IotroridosideA, a novel cytotoxic glycosphingolipid from the marine sponge Iotrochota ridley. Chin.J.Chern., 19, 362-364 (2001) https://doi.org/10.1002/cjoc.20010190408
  42. Dmitrenok, A. S., Anjaneyulu, v.. Subba Rao, P. V., Radhika, P., Dmitrenok, P. S., Boguslavsky, V. M., and Stonik, V. A., Chemistry of natural compounds, Bioorganic and Biomolecular Chemistry Glycosphingolipid with a branched sphingosine base from the soft corals from the Andaman Islands. Russ. Chern.Bull., Int. Ed., 50, 1474-1477 (2001) https://doi.org/10.1023/A:1012709812587
  43. Duran, R.,Zubia, E., Ortega, M. 1., Naranjoo S., and Salva, 1., Phallusides, new glucosphingolipids from the Ascidian Phallusia furnigata. Tetrahedron, 54, 14597-14602 (1998) https://doi.org/10.1016/S0040-4020(98)00917-X
  44. Endo, M., Nakagawa, M., Hamamoto, Y., and Ishihama, M., Pharmacologically active substances from Southern Pacific marine invertebrates. Pure Appl. Chem., 58,387-394 (1986) https://doi.org/10.1351/pac198658030387
  45. Faulkner, D. J., Marine natural products. Nat. Prod. Rep., 19, 1-48 (2002) and earlier reports in this series and references cited therein
  46. Fiezi, T., Carbohydrate differentiation antigens: probable ligands for cell adhesion molecules. Trends Biochem.Sci., 16,84-86 (1991) https://doi.org/10.1016/0968-0004(91)90038-W
  47. Garg, H. S., Sharma, M., Bhakuni, D. S., P.ramanik, B. N., and Bose, A. K., An antiviral sphingosine derivative from the green alga Ulvafasciata. Tetrahedron Lett., 33, 1641-1644 (1992) https://doi.org/10.1016/S0040-4039(00)91695-2
  48. Garg, H. S. and Agarwal, S., A novel sphingosine derivative from the sponge Spirastrella inconstans. J. Nat. Prod, 58, 442-445 (1995) https://doi.org/10.1021/np50117a016
  49. Grode, S. H. and Cardellina, J. H., Ceramides from the sponge Dysidea etheria. Lipids, 18,889-893 (1983) https://doi.org/10.1007/BF02534567
  50. Hattori, T., Adachi, K., and Shizuri, Y., New ceramide from marine sponge Haliclona koremella and related compounds as antifouling substances againstmacroalgae. J. Nat. Prod, 61, 823-826 (1998) https://doi.org/10.1021/np970527y
  51. Hayashi, A., Chen, H. C, and Shiono, H., Studies on sterol sulfate, sterol glycoside and cerebroside of sea cucumber Stichopus japonicus. Kinki Daigaku Rikogakubu Kenkya Hokoku, 26, 73-85 (1990)
  52. Hayashi, A. and Matsubara, T., A new homologue of phospho noglycosphingolipid, N methylaminoethylphosphonylgalactosyl ceramide. Biochim. Biophys. Acta, 1006, 89-94 (1989) https://doi.org/10.1016/0005-2760(89)90327-5
  53. Hayashi, A. and Matsuura, T., Characterization of aminoalkylphosphonyl cerebrosides in muscle tissues of Turbo comutus. Chem.Phys.Lipids, 22, 9-13 (1978) https://doi.org/10.1016/0009-3084(78)90003-8
  54. Hayashi, A., Nishimure, Y., and Matsubara, T., Occurance of ceramide digalactoside as the main glycosphingolipids in the marine sponge Halichondria japonica. Biochim. Biophys. Acta, 1083, 179-186 (1991) https://doi.org/10.1016/0005-2760(91)90040-O
  55. Higuchi, R., Natori, T., and Komori, T., Biologically active glycosides from Asteroidea, xx. Glycosphingolipids from the starfish Asterinapectinifera, 1 Isolation and characterization of Acanthacerebroside B and structure elucidation of related, nearly homogeneous cerebrosides. Liebigs Ann.Chem., 51-55 (1990a)
  56. Higuchi, R., Kagoshima, M., and Komori, T., Biologically active glycosides from Asteroidea, XXII. Glycosphingolipids from the starfish Astropecten latespinosus, I Structures of three new cerebrosides, Astrocerebroside A, B, and C and of related nearly homogeneous cerebrosides from the starfish Liebigs Ann.Chern., 659- 663 (1990b)
  57. Higuchi, R., Thou, J. X, Inukai, K., and Komori, T., Glycosphingolipids from the starfish Asterias amurensis versicolor, 1. Isolation and structure of six new cerebrosides, Asteriacerebrosides A F, and two known cerebrosides, Astrocerebroside A and Acanthacerebroside C. Liebigs Ann.Chern., 745-752 (1991)
  58. Higuchi, R., Inukai, K., Thou, JX., Honda, M., Komori, T., Tsuji, S., and Nagai, Y., Biologically active glycosides from Asteroidea, XXXi. Glycosphingolipids from the starfish Asterias amurensis versicolor Sladen, 2 Structure and biological activity of ganglioside molecular species. Liebigs Ann.Chem., 359-366 (1993)
  59. Higuchi, R., Inagaki, M., Tokogawa, K., Mayamoto, T., and Komori, T., Constituents of Holothuroideae, IV Isolation and structure of three new cerebrosides, CE 2b, CE 2c and CE 2d, from the sea cucumber Cucumaria echinata. Liebigs Ann. Chem., 79-81 (1994a)
  60. Higuchi, R., Inagaki, M., Tokogawa, K., Miyamoto, T., and Komori, T., Constituents of Holothuroideae. V. Isolation and structure of cerebrosides from the sea cucumber Pentacta australis. Liebigs Ann.Chem., 653-658 (1994b)
  61. Higuchi, R., Matsumoto, S., Fujita, M., Komori, T., and Sasaki, T., Biologically active glycosides from Asteroidea, XXXII. Glycosphingolipids from the starfish Astropectenlatespinosus, 2 Structure of two new ganglioside molecular species and biological activity of the ganglioside. LiebigsAnn. Chem, 545-550 (1995)
  62. Higuchi, R., Harano, Y., Mitsuyuki, M., Isobe, R., Yamada, K., Miyamoto, T., and Komori, T., Biologically active glycosides from Asteroidea, XXXIv. Isolation and structure of cerebrosides from the starfish Stellaster equestris. Liebigs Ann.Chem., 593-599 (1996)
  63. Hirsch, S. and Kashman, Y., New glycosphingolipids from marine organisms. Tetrahedron, 45, 3897-906 (1989) https://doi.org/10.1016/S0040-4020(01)89249-8
  64. Honda, M., Veda, Y., Sugiyama, S., and Komori, T., Synthesis of a new cerebroside from a Chondropsis sp. sponge. Chern. Pharm. Bull., 39, 1385-1391 (1991) https://doi.org/10.1248/cpb.39.1385
  65. Hoshi, M. and Nagai, Y., Novel sialosphingolipids from the spermatozoa of the sea urchin Anthocidaris crassispina, Biochern. Biophys. Acta, 388, 152-156 (1975) https://doi.org/10.1016/0005-2760(75)90071-5
  66. Inagaki, M., Isobe, R., Kawano, Y., Miyamoto, T., Komori, T., and Higuchi, R., Isolation and structure of three new ceramides from the starfish Acanthaster planci. Eur. J. Org. Chem., 129-131 (1998)
  67. Inagaki, M., Isobe, R., and Higuchi, R., Biologically active glycosides from Asteroidea, 39. Glycosphingolipids from the starfish Linckia laevigata, l Isolation and structure of a new ganglioside molecular species. Eur. J. Org. Chem., 771-774 (1999)
  68. Ishida, R., Shirahama, H., and Matsumoto, T, Coralipid, a new glycosphingolipids from the red alga Corallina pilulifera. Chem. Lett.,9 -12 (1993)
  69. Itonori, S., Hamana, H., Hada, N., Takeda, T., Dulaney, J. T, and Sugita, M., Structural characterization of a novel series of fucolipids from the marine annelid, Pseudopotamilla occelata. J. Oleo Sci., 50, 537-544 (2001) https://doi.org/10.5650/jos.50.537
  70. Jenkins, K. M., Jensen, P. R., and Fenical, W, Thraustochytrosides AC: new glycosphingolipids from a unique marine protist, Thraustochytrium globosum. Tetrahedron Lett., 40, 7637-7640 (1999) https://doi.org/10.1016/S0040-4039(99)01562-2
  71. Jin, W, Rinehart, K. L., and Jares-Erijan, E. A, Ophidiacerebrosides:Cytotoxic glycosphingolipids containing a novel sphingosine from a sea star. J.Org.Chem., 59, 144-147 (1994) https://doi.org/10.1021/jo00080a023
  72. John W B., Brent R c, Murray H. G. M., Peter T. N., and Michele R P., Marine natural products. Nat. Prod. Rep., 20, 148 (2003)
  73. Kaneko, M., Kisa, F., Yamada, K., Miyamoto, T, and Higuchi, R, Constituents of Holothuroidea, 8. Structure of neuritogenic active gangliosides from the sea cucumber Stichopus japonicus. Eur. J. Org. Chem., 3171-3174 (1999)
  74. Karlsson, K. A, Leffler, H., and Samuelsson, B. E., Characterization of cerebroside (monoglycosylcerarnide) from the sea anemone, Metridium senile. Identification of the major long chain base as an unusual dienic base with a methyl branch at a double bond. Biochim. Biophys. Acta, 574, 79-93 (1979) https://doi.org/10.1016/0005-2760(79)90087-0
  75. Kawano, Y, Higuchi, R, Isobe, R, and Komori, T., Biologically active glycosides from Asteroidea, XIII. Glycosphingolipids from the starfish Acanthaster planci, 2-Isolation and structure of six new cerebrosides. Liebigs Ann.Chem., 19-24 (1988a)
  76. Kawano, Y, Higuchi, R., Isobe, R., and Komori, T, Biologically active glycosides from Asteroidea, XVII. Glycosphingolipids from the starfish Acanthaster planci, 3 Isolation and structure of two new cerarnide lactosides. Liebigs Ann.Chem., 1181-1183 (1988b)
  77. Kawano, Y., Higuchi, R., and Komori, T, Biologically active glycosides from Asteroidea, XIX. Glycosphingolipids from the starfish Acanthaster planci, 4 Isolation and structure of five new gangliosides. Liebigs Ann.Chem., 43-50 (1990)
  78. Kawatake, S., Inagaki, M., and Isobe, R, Biologically active glycosides from Asteroidea, 37. Glycosphingolipids from the starfish Luidia maculata, I Structure of a new sulfatide molecular species. Liebigs Ann./Recueil, 1797-1800 (1997)
  79. Kawatake, S., Inagaki, M., Mayamoto, T, Isobe, R., and Higuchi, R, Biologically active glycosides from Asteroidea, 38. Glycosphingolipids from the starfish Luidia maculata, 2Isolation and structure of a GM3 type ganglioside molecular species. Eur: J. Org. Chem, 765-769 (1999)
  80. Keusgen, M., Yu, C.-M., Curtis, J. M., Brewer D., and Ayer, S. W., A cerebroside from the marine fungus microsphaeropsis olivacea (Bonford.) Hoehn. Biochem. Syst. Ecol., 24, 465-468 (1996) https://doi.org/10.1016/0305-1978(96)88876-4
  81. Kikuchi, A, Nieda, M., Schimdt, C; Koezuka, Y, Ishihara, S., Ishikawa, Y, Tadokoro, K., Durrant, S., Boyd, A, Juji, T, and Nicol, A, Invitro anti tumor activity of u galactosylceramidesti, ulated human invariant Va24+NKT cells against melanoma. Br. J. Cancer, 85, 741-746 (2001) https://doi.org/10.1054/bjoc.2001.1973
  82. Kobayashi, J., Ishibashi, M., Nakamura, H., Hirata, Y, Yamasu, T., Sasaki T., and Ohizumi, Y, Symbiorarnide, a novel Ca2+ATPase activator from the cultured dinoflagellate Symbiodinium sp. Experientia, 44, 800-802 (1988)
  83. Kobayashi, J., Mikami, S., Shigemori, H., Takao, T., Shimonishi, Y, Izuta S., and Yoshida, S., Flavocristamides A and B, new DNA Polymerase a Inhibitors from a marine bacterium Flavobacterium sp. Tetrahedron, 51, 10487-10490 (1995) https://doi.org/10.1016/0040-4020(95)00631-H
  84. Kochetkov, N. K., Smimova, G. P., and Chekareva, N. v; Isolation and structural studies on a sulfated sialosphingolipid from the sea urchin Echinocardium cordatum. Biochim.Biophys.Acta, 424, 274-277 (1976) https://doi.org/10.1016/0005-2760(76)90195-8
  85. Kochetkov, N. K., Smimova, G. P., and Glukhoded, I. S., Structure of sialolipid from the gonads of the sea urchin Strongylocentrous nudus., Bioorg.Khim., 4, 1093-1098 (1978)
  86. Kochetkov, N. K., Zhukova, I. G., Smimova, G. P., and Glukhoded, I. S., Isolation and Characterization of a Sialoglycolipid from the sea urchin Strongylocentrotus intermedius. Biochem. Biophys. Acta. 326, 74-76 (1973) https://doi.org/10.1016/0005-2760(73)90029-5
  87. Kubo, H. and Hoshi, M., Immunological study of the distribution of a ganglioside in sea urchin eggs, J.Biochem. 108, 193-196 (1990)
  88. Kubo, H., Irie, A, Inagaki, F., and Hoshi, M., Gangliosides from the eggs of the sea urchin Anthocidaris crassispina. J. Biochem., 108, 185-188 (1990)
  89. Li, H.,Matsunaga, S., and Fusetani, N., Halicylindrosides, Antifungal and Cytotoxic cerebrosides from the marine sponge Halichondria cylindrata. Tetrahedron, 51, 2273-2280 (1995) https://doi.org/10.1016/0040-4020(94)01097-J
  90. Li, H., Lin, Y, Liu, X., Zhou, S., and Vrijmoed, L. L. P., Study on secondary metabolites of marine fungus Fusarium sp. from South China Sea. Haiyang Kexue, 26, 57-59 (2002)
  91. Li, R, Di, L. and Long, K., Chemical constituents of Chinese soft corals. Part XIX. Lobophytum chevaleiri (Tixier-Durivault), Zhongshan Daxue Xuebo, Ziran Kexueban, 28, 22-27 (1989)
  92. Li, Y C., Six kinds of N-acylsphingosines from the Chinese gorgonian Junceella squamata. Zhongguo Haiyand Yaowu, 14, 1-4 (1995)
  93. Liyan, L., Songzhi, D., Qin, Z., Dingjun, X., and Houming, W, Chemical constituents of marine sponge Iotrochota ridley from South China Sea. Zhongguo Haiyand Yaowu, 19, 1-3 (2000)
  94. Lo, J.-M., Wang, W-L., Chiang, Y-M., and Chen, C.-M., Cerarnides from the Taiwan red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. J. Chinese Chem. Soc. (Taipei, Taiwan), 48, 821-826 (2001)
  95. Loukaci, A, Bultel-Ponce, v., Longeon, A, and Guyot, M., New lipids from the tunicate Cystodytes cf. dellechiajei, as PLA2 inhibitors. J. Nat. Prod., 63, 799-802 (2000) https://doi.org/10.1021/np990443k
  96. Mahendran, M., Somasundaram, S., and Thomson, T. H., A revised structure for caulerpicin from Caulerpa racemosa. Phytochemistry, 18, 1885-1886 (1979) https://doi.org/10.1016/0031-9422(79)83080-0
  97. Maier, M. S., Kuriss, A, and Sheldes, A M., Isolation and structure of glucosylceramides from the starfish Cosmasterias lurida. Lipids, 33, 825-827 (1998) https://doi.org/10.1007/s11745-998-0277-8
  98. Makareva, T. N., Denisenko, V. A, Svetashev, V.I., Vysotskii, M. V., and Stonik, V. A, Cerebrosides from the Far eastern sponge Hymenyacidon assimilis. Khim. Prir. Soedin, 5,634-639 (1989)
  99. Mancini, I., Guella, G., Debitus, C., and Pietra, E, Oceanapins AF, unique branched ceramides from the Haploscerid sponge Oceanapia cf. tenuis of the Coral Sea. Helv.Chim.Acta, 77, 51-58 (1994) https://doi.org/10.1002/hlca.19940770108
  100. Matsubara, T. and Hayashi, A, Structural studies on glycolipid of shellfish. IV. A novel pentaglycosyl ceramide from abalone Haliotisjaponica. Biochim.Biophys.Acta. 711, 551-555 (1982)
  101. Matsubara, T. and Hayashi, A., Occurrence of phosphonotetraglycosyl ceramide in the sea hare Dolabella auricolaria.Biochim. Biophys. Acta. 1166, 55-60 (1993)
  102. Matsubara, T. and Hayashi, A, Structural studies on glycolipid of shellfish.ill. Novel glycolipids from Turbo comutus. J. Biochem., 89, 645-649 (1981)
  103. Matsubara, T. and Hayashi, A, Structural studies on glycolipids of shellfish. V. Gala 6 series glycolipids of the marine snail Chlorostoma argyrostoma turbinatum. J. Biochem., 99, 1401-1404 (1986)
  104. Matsuura, F, Phosphonosphingolipid, a novel sphingolipid from the viscera of Turbo comutus. Chern. Phys. Lipids, 19, 223-226 (1977) https://doi.org/10.1016/0009-3084(77)90045-7
  105. Matsuura, F., The identificationof aminoalkylphosphonyl cerebrosides in the marine gastropod Monodonta labio. J. Biochem., 85, 433-436 (1979)
  106. Meng, Y., Su, J., and Zeng, L., Chemical constituent studies on the marine sponge Stelletta tenus (Lindgren). Zhongshan Daxue Xuebao, Ziran Kexueban, 35, 69-72 (1996)
  107. Miche'le M. and Miche'le G., New sphingosines from the marine sponge Grayella cyatophora. 1. Nat. Prod, 65, 1722-1723 (2002) https://doi.org/10.1021/np020075b
  108. Miyamoto, T., Yamamoto, A, Wakayabashi, M., Nagaregawa, Y., Inagaki, M., Higuchi, R, Iha, M., and Teruya, K, Biologically active glycosides from Asteroidea, 40. Two new gangliosides, Acanthagangliosides I and J from the starfish Acanthaster planci. Eur. J.Org.Chem., 2295-2301 (2000)
  109. Nagle, D. G., McClatchey, W. c., and Gerwick, W. H., New glycosphingolipids from the marine sponge Halichondriapanicea. J. Nat. Prod, 55, 1013-1017 (1992) https://doi.org/10.1021/np50085a032
  110. Nakamura, H., Kawase, Y.,Maruyama, K, and Murai, A, Studies on polyketide metabolites of a symbiotic dinoflagellate, Symbiodinium sp.: A new C30 marine alkaloid, Zooxanthellamine, a plausible precursor for Zoanthid alkaloids. Bull. Chern. Soc. Jpn., 71, 781-787 (1998) https://doi.org/10.1246/bcsj.71.781
  111. Nakao, Y., Takada,K, Matsunaga, S., and Fusetani, N., Calycerarnides AC: neuraminidase inhibitory sulfated ceramides from the marine sponge Discodermia calyx. Tetrahedron, 57,3013-3017 (2001) https://doi.org/10.1016/S0040-4020(01)00163-6
  112. Natori, T., Koezuka, Y., and Riga, T., Agelasphins, novel (lgalactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett., 34, 5591-5592 (1993) https://doi.org/10.1016/S0040-4039(00)73889-5
  113. Natori, T., Morita, M., Akimoto, K, and Koezuka, Y.,Agelasphins, marine sponge Agelas mauritianus. Tetrahedron, 50, 2771-2784 (1994) https://doi.org/10.1016/S0040-4020(01)86991-X
  114. Naumov, Y.N., Keith S. Bahjat., Gausling, R, Abraham, R, Exley, M. A., Koezuka, Y.,Balk, S. B., Strominger, J. L., Clare-Salzer, M., and Wilson, S. B., Activation of CDld restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc.Natl. Acad.Sci., 98, 13838-13843 (2001)
  115. Noda, N., Tanaka, R, Miyahara, K, and Kawasaki, T., Two novel galactosylceramides from Marphysa sanguinea, Tetrahedron Lett., 33, 7527-7530 (1992) https://doi.org/10.1016/S0040-4039(00)60815-8
  116. Noda, N., Tanaka, R, Miyahara, K, and Kawasaki, T., Isolation and characterization of a novel type of glycosphingolipid from Neanthes diversicolor. Biochim. Biophys. Acta, 1169, 30-38 (1993) https://doi.org/10.1016/0005-2760(93)90078-N
  117. Ochi, M., Yamada, K, Kawakami H., Tatsukawa, A, Kotsuki, H., and Shibata, K, Calicogorgins A, B, and C, three bioactive sphingamine derivatives from the gorgonian Calicogorgia sp. Tetrahedron Lett., 33,7531-7534 (1992) https://doi.org/10.1016/S0040-4039(00)60816-X
  118. Ojika, M., Yoshino, G., and Sakagami, Y., Novel ceramide 1sulfates, potent DNA Topoisomerase I inhibitors isolated from the Bryozoa Watersipora cucullata. Tetrahedron Lett, 38, 4235-4238 (1997) https://doi.org/10.1016/S0040-4039(97)00852-6
  119. Parameswaran, P. S., Das, B. and Kamat, S. Y., Lipid contents of the sponge Haliclona sp. Indian J.Chem., 33B, 99-101 (1994)
  120. Pettit, G. R, Xu, J., Gingrich, D. E., Williams, M. D., Doubek, D. L., Chapuis, J. C, and Schimdt, J. M., Antineoplastic agents. Part 395. Isolation and structure of agelagalastatin from the Papua New Guinea marine sponge Agelas sp. Chern. Commun., 915-916 (1999)
  121. Prokazova, N. V., Mikhailov, AT., Kocharov, S. L., Malchenko, L. A, Zvezdina, N. D., Buznikov, G., and Bergelson, L. D., Unusual gangliosides of eggs and embryos of the sea urchin Strongylocentrotus intermedius. Eur.J.Biochem., 115,671- 677 (1981) https://doi.org/10.1111/j.1432-1033.1981.tb06255.x
  122. Ramesh, P., Ravikanth, V., Reddy, V. L. N., Goud, T. V.. and Venkateswarlu, Y., A novel ceramide form the Indian marine sponge Fasciospongia cavemosa. J. Chern. Res. Synop., 232-234 (2001)
  123. Reddy, G. B. S., Rao, D. V., Rao, C. B., Dhananjaya, N., Kuttan, R, and Babu, T. D., Isolation and structural determination of new sphingolipids and pharmacological activity of Africanene and other metabolites from Sinularia leptoclados. Chern. Pharm. Bull., 47, 1214-1220 (1999) https://doi.org/10.1248/cpb.47.1214
  124. Schmitz, F. J. and McDonald, F. J., Isolation and identification of cerebrosides from the marine sponge Chondrilla nucula. J. Lipid Res., 15, 158-164 (1974)
  125. Sharma, M., Garg, H. S., and Chandra, K, Erythro sphing 4,8dienine N palmitate: An antiviral agent from the green alga Ulvafasciata. Bot. Mar: 39, 213-216 (1996) https://doi.org/10.1515/botm.1996.39.1-6.213
  126. Shashkov, A. S., Srnirnova, G. P., Cekareva, N. V., and Dabrowski, J., Structural study of sialoglycolipids from the sea urchin Tripneustes ventricosa Gonads using H and $^{13}{C-NMR}$ spectroscopy, Bioorg.Khim., 12, 789- 793 (1986)
  127. Shin, J. and Seo, Y., Isolation of new ceramides from the gorgonian Acabaria undulata. J. Nat. Prod., 58, 948-953 (1995) https://doi.org/10.1021/np50120a022
  128. Smimova, G. P., Gangliosides from the starfish Evasterias echinosoma: identification of a disialoganglioside containing 8 O methyl N acetylneuraminic acid and N-formyl galactosamine. Russ. Chem. Bull., 49, 159-164 (2000b) https://doi.org/10.1007/BF02499084
  129. Smimova, G. P., Hematoside with 8 O methyl N glycolyl neuraminic acid from the starfish Linckia laevigata. Russ. Chem. Bull., 49, 165-168 (2000a) https://doi.org/10.1007/BF02499085
  130. Smirnova, G. P.,Chekareva, N. v., and Kochetkov, N. K, Structure of a minor sialoglycolipid from the sea urchin Echinocardium cordatum., Bioorg. Khim., 4, 937-941 (1978)
  131. Smimova, G. P., Chekareva, N. V., and Kochetkov, N. K., Structure of sialoglycolipids from the gonad tissue of the urchin Echinarachnius parma., Bioorg.Khim., 6, 1667- 1669 (1980)
  132. Springer, T. A. and Lasky, L. A., Cell adhesion. Sticky sugars for selectins. Nature, 349, 196-197 (1991)
  133. Su, J., Li, Y., and Yu, X., Studies on the chemical constituents of Chinese soft corals (XX). Ceramides from soft corals. Zhongshan Daxue Xuebao, Ziran Kexueban, 28,33-38 (1989)
  134. Subrahmanyam, C., Kulatheeswaran, R., and Rao, C. V., New sphingosines from two soft corals of the Andaman & Nicobar Islands. Indian J.Chem., 35B, 578-580 (1996)
  135. Sugita, M., Aoki, K., Sakata, A., and Hori, T., Glycosphingolipids in Coelenterata. Characterization of cerebrosides from the sea anemone, Actinogeton sp. Shiga Daigku Kyoikugakubu Kiyo, Shizen Kagaku, Kyoiku Kagaku, 44, 25-30 (1994)
  136. Sugita, M., Yamake, N., Hamana, H., Sasaki, K, and Dulaney, J. T., Structural characterization of neutral glycosphingolipids, mono, di and triglycosylcerarnides, from the marine annelid, Pseudopotamilla occelata. Nihon Yukagakkaishi, 48, 671-679 (1999)
  137. Sugiyama, S., Honda, M., and Komori, T., Biologically active glycosides from Asteroidea, Xv. Asymmetric synthesis of phytosphingosine anhydro base: Assignment of the absolute stereochemistry. Liebigs Ann.Chem., 619-625 (1988)
  138. Tanaka, I., Matsuoka, S., Murata, M., and Tachibana, K., A new ceramide with a novel branched chain fatty acid isolated from the epiphytic dinoflagellate Coolia monotis. J. Nat. Prod., 61, 685-688 (1998) https://doi.org/10.1021/np970554o
  139. Thudichum, J.LW., A Treatise on the Chemical Constitution ofthe Brain, Based Throughput upon Original researches, Bailliere, Tindall, and Cox, London, 1884
  140. Vanisree, M., Subbaraju, G. V., and Bheemasankara Rao, Ch., Chemical constituents of Pseudopterogorgia species of the Indian Ocean. J. Asian Nat. Prod. Res., 3, 23 29 (2001) https://doi.org/10.1080/10286020108042835
  141. Vanisree, M. and Subbaraju, G., Alcyonacean metabolites VIII: Antibacterial metabolites from Lobophytum crassum of the Indian Ocean. Asian J. Chem., 14, 957-960 (2002)
  142. Vaskovskii, V. E., Kostetskii, E. Y., Svetashev, V. I, Zhukova,1. G., and Smimova. G. P., Compo Biochem Physiol. 34, 163-177 (1970) https://doi.org/10.1016/0010-406X(70)90064-2
  143. Venkateswarlu, Y., Srinivasa Reddy, N., Ramesh, P., Rama Rao, M., and Siva Ram, T., New ceramides from the sponges of Gulf of Mannar. Indian J.Chem., 37B, 1264 1268 (1998)
  144. Venkannababu, U., Bhandari, S. P. S., and Garg, H. S., Regulosides A-C: Glycosphingolipids from the starfish Pentaceraster regulus. Liebigs Ann./Recueil, 1245-1247 (1997)
  145. Wan, Y., Su, J., and Zeng, L., Ceramide from marine sponge Phyllospongia sp. Zhongshan Daxue Xuebao, Ziran Kexueban, 36, 113-115 (1997)
  146. Wang, C., Han, G., Su, J., and Zeng, L., Chemical constituents of the tunicate Styela canopus from Dayawan Bay. Fenxi Huaxue, 29, 168-170 (2001)
  147. Wang, M.-Y., Lu, Wei-G., Zeng, L., and Su, J., Chemical constituents of the marine sponge Sigmadocia cymiformis Esper. Yingyong Huaxue, 19, 1-3 (2002)
  148. Wang, X-Z., Wu, Y.-L., Jiang, S., and Singh, G., General and efficient syntheses of $C_{18} 4$,8 sphingadienines via $S_N2$'type homoallylic coupling reactions mediated by thioether stabilized copper reagents. J. Org. Chem., 65, 8146-8151 (2000) https://doi.org/10.1021/jo005602f
  149. Xiao, D., Deng, S., Wu, H., and Wu, H., Chemical constituents of South China Sea marine sponge Gellius cymiformis. Tianran Chanwu Yanjiu Yu Kaifu, 11, 6-9 (1999)
  150. Xiao, D., Deng, S., and Zeng, L., New ceramides from the marine sponge Clathria fasciculate. Zhongshan Daxue Xuebao, Ziran Kexueban,41, 111-114 (2002)
  151. Xu, S.and Zeng L., Study on the chemical constituents of the marine sponge Polymastia sobustia. Youji Huaxue, 21, 45-48 (2001)
  152. Xu, S.-H., Cen, Y.-Z., and Zeng, L.-M., Sertularamide from the alga Caulerpa sertularioides. Chin.Chem.Lett.; 8, 419-420 (1997)
  153. Xu, X, Wang, M., Su, J., and Zeng, L., Chemical studies on soft coral Lobophytum microspiculatum. Redai Haiyang, 17, 89-94 (1998)
  154. Xu, X-H., Yao, G.-M., Lu, J.-H., Li, Y.-M., and Lin, C.-J., New cerebroside from the marine sponge Phacellia fusca Schmidt. Gaodeng Xuexiao Huaxue Xuebao, 22, 116-119 (2001)
  155. Yamada, S., Araki, S., Abe, S., Kon, K., Ando, S., and Satake, M.,Structural analysis of a novel triphosphonoglycosphingolipid from the egg of the sea hare Aplysia kurodai. LBiochem., 117, 794-798 (1995)
  156. Yamada, K, Hara, E., Miyamoto, T., Higuchi, R., Isobe, R., and Honda, S., Constituents of Holothuroidea, 6. - Isolation and structure of biologically active glycosphingolipids from the sea cucumber Cucumaria echinata. Eur. J. Org. Chem., 371-378 (1998a)
  157. Yamada, K., Harada, Y, Nagaregawa, Y, Miyamoto, T., Isobe, R, and Higuchi, R, Constituents of Holothuroidea. 7. Isolation and structure of biologically active gangliosides from the sea cucumber Holothuria pervicax. Eur. J. Org. Chem.,2519-2525 (1998b)
  158. Yamada, K., Harada, Y, Nagaregawa, Y, Miyamoto, T., Isobe, R, and Higuchi, R, Constituents of Holothuroidea. 9. Isolation and structure of a new ganglioside molecular species from the sea cucumber Holothuria pervicax. Chem. Pharm.Bull., 48, 157-159 (2000) https://doi.org/10.1248/cpb.48.157
  159. Yamada, K., Matsubara, Y., Kaneko, M. Miyamoto, T., and Higuchi, R, Constituents of Holothuroidea. 10. Isolation and structure of a biologically active ganglioside molecular species from the sea cucumber Holothuria leucospilota. Chem. Pharm. Bull., 49, 447-452 (2001) https://doi.org/10.1248/cpb.49.447
  160. Yamaguchi, Y., Konda, K., and Hayashi, A, Studies on the chemical structure of neutral glycosphingolipids in eggs of the sea hare Aplysiajuliana. Biochirn. Biophys. Acta, 1165,110-113 (1992a) https://doi.org/10.1016/0005-2760(92)90082-7
  161. Yamaguchi, Y., Otha M., and Hayashi, A., Structural elucidation of a phosphonoglycolipid in eggs of a sea hare Aplysia juliana. Biochim. Biophys. Acta, 1165, 160-165 (1992b) https://doi.org/10.1016/0005-2760(92)90182-U
  162. Yang, M. Y., Luo, Y., and Su, J. Y., A new cerarnide from the soft coral Cladiella humesi Verseveldt. Chin.Chem.Lett., 11, 783-784 (2000)
  163. Yang, X. and Su, J., Chemical studies on the gorgonian Isis minorbranchlasta. Zhongguo Haiyang Yaowu, 13,27-28 (1994)
  164. Zhang, S., Yi, Y., Tang, H., Xu, Q., Zou, Z., and Li, L., Chemical constituents of marine sea anemone Anthopleura pacific (I). Dier Junyi Daxue Xuebao, 23, 250-253 (2002)
  165. Zheng, Z., Lei, L. M., and Su, J. Y., A new cerarnide from the marine sponge Biemna sp. Chin. Chern. Lett., 6, 103-104 (1995)