References
- Langcake, P.; Pryce, R. J. Physiol. Plant Pathol. 1976, 9, 77. https://doi.org/10.1016/0048-4059(76)90077-1
- Chung, M.-I.; Teng, C.-M.; Cheng, K.-L.; Ko, F.-N.; Lin, C.-N.Planta Med. 1992, 58, 274. https://doi.org/10.1055/s-2006-961453
- Kimura, Y.; Okuda, H.; Arichi, S. Biochem. Biophys. Acta 1985,175, 275.
- Inamori, Y.; Kubo, M.; Tsujibo, H.; Ogawa, M.; Saito, Y.; Miki,Y.; Takemura, S. Chem. Pharm. Bull. 1987, 35, 887. https://doi.org/10.1248/cpb.35.887
- Mannila, E.; Talvitie, A.; Kolehmainen, E. Phytochemistry 1993,33, 813. https://doi.org/10.1016/0031-9422(93)85280-5
- Langcake, P.; Conford, C. A.; Pryce, R. J. Phytochemistry 1979,18, 1025. https://doi.org/10.1016/S0031-9422(00)91470-5
- Jayatilake, G. S.; Jayasuriya, H.; Lee, E.-S.; Koonchanok, N. M.;Geahlen, R. L.; Ashendel, C. L.; McLaughlin, J. L.; Chang, C.-J.J. Nat. Prod. 1993, 56, 1805. https://doi.org/10.1021/np50100a021
- Robyt, J. F.; Kimble, B. K.; Walseth, T. F. Arch. BiochemBiophys. 1974, 165, 634. https://doi.org/10.1016/0003-9861(74)90291-4
- Meulenbeld, G. H.; Zuilhof, H.; VanVeldhuizen, A.; Van den Heuvel, R. H. H.; Hartmans, S. Appl.Environ. Mocrobiol. 1999, 65, 4141.
- Kitao, S.; Sekine, H.Biosci. Biotechnol. Biochem. 1994, 58, 38. https://doi.org/10.1271/bbb.58.38
- Shin, I.; Park, S.;Kim, K. S.; Cho, J. W.; Lim, D. Bull. Korean Chem. Soc. 2002, 23,15. https://doi.org/10.5012/bkcs.2002.23.1.015
- Kim, J.; Pak, Y. K.; Chun, K. H.; Shin, J. E. Bull. KoreanChem. Soc. 2001, 22, 758.
- Meulenbeld, G. H.; Hartmans, S. Biotech. Bioengin. 2000, 70,363. https://doi.org/10.1002/1097-0290(20001120)70:4<363::AID-BIT1>3.0.CO;2-2
- Cichewicz, R. H.; Kouzi, S. A. J. Nat. Prod. 1998, 61, 1313. https://doi.org/10.1021/np980139b
- Aoki, H.; Shiroza, T.; Hayakawa, M. S.; Kuramitsu, H. K.Infect. Immun. 1986, 53, 587.
- Hanada, N.; Kuramitsu, H. K.Infect. Immun. 1988, 56, 1999.
- Nakahara, K.; Kontani, M.; Ono, H.; Kodama, T.; Tanaka, T.;Ooshima, T.; Hamada, S. Appl. Environ. Mocrobiol. 1995, 61,2768.
- Orsini, F.; Pelizzoni, F.; Verotta, L.; Aburjai, T. J. Nat. Prod. 1997,60, 1082. https://doi.org/10.1021/np970069t
- Mattivi, F.; Reniero, F.; Korhammer, S. J. Agric. Food Chem.1995, 43, 1820. https://doi.org/10.1021/jf00055a013
- Bachelor, F. W.; Loman, A. A.; Snowdon, L. R. Canadian J.Chem. 1970, 48, 1554. https://doi.org/10.1139/v70-253
Cited by
- Enzymatic Synthesis of α-Glucosides of Resveratrol with Surfactant Activity vol.353, pp.7, 2011, https://doi.org/10.1002/adsc.201000968
- Microbial Mannosidation of Bioactive Chlorogentisyl Alcohol by the Marine-Derived Fungus Chrysosporium synchronum vol.59, pp.4, 2011, https://doi.org/10.1248/cpb.59.499
- Ionic liquids as cosolvents for glycosylation by sucrose phosphorylase: balancing acceptor solubility and enzyme stability vol.15, pp.7, 2013, https://doi.org/10.1039/c3gc40449h
- Antitumor activity of stilbenoids and flavonoids isolated from Acanthopanax brachypus vol.84, pp.7, 2014, https://doi.org/10.1134/S1070363214070329
- vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10451
- Enzymatic Preparation of Phenolic Glucosides by Streptococcus mutans. vol.35, pp.17, 2004, https://doi.org/10.1002/chin.200417201
- Plant Glycosyltransferases: Their Potential as Novel Biocatalysts vol.11, pp.19, 2003, https://doi.org/10.1002/chem.200500115
- Microbial transformation of the bioactive sesquiterpene, cyclonerodiol, by the ascomycete Penicillium sp. and the actinomycete Streptomyces sp. vol.40, pp.5, 2003, https://doi.org/10.1016/j.enzmictec.2006.09.002
- A New Acylated Stilbene Glycoside from Acanthopanax brachypus vol.30, pp.3, 2009, https://doi.org/10.5012/bkcs.2009.30.3.703
- Construction of Artificial Biosynthetic Pathways for Resveratrol Glucoside Derivatives vol.24, pp.5, 2003, https://doi.org/10.4014/jmb.1401.01031
- Whole-cell biocatalytic, enzymatic and green chemistry methods for the production of resveratrol and its derivatives vol.39, pp.None, 2003, https://doi.org/10.1016/j.biotechadv.2019.107461