DOI QR코드

DOI QR Code

The Electronic Structure and Stability of the Heterofullerene :C(60-2x)(BN)x

  • Yee, Kyeong-Ae (Korea Institute of Science & Technology) ;
  • Yi, Hong-Suk (Supercomputing Center, Korea Institute of Science and Technology Information) ;
  • Lee, Sang-San (Supercomputing Center, Korea Institute of Science and Technology Information) ;
  • Kang, Sung-Kwon (Department of Chemistry, Chungnam National University) ;
  • Song, Jin-Soo (Department of Chemistry, Chungnam National University) ;
  • Seong, See-Yearl (Bio-informatics and Molecular Design Center, Soongsil University)
  • Published : 2003.04.20

Abstract

The transition from aromatics to heteroaromatics is very attractive since it provides an extremely large structural variety, the chemical functionality as well as the possibilities for electronic tuning of the fullerene properties. A synthesis of heterofullerenes in macroscopic quantities is unknown however the spectrometric detection of $C_{59}B$ has been reported. The electronic structures of $C_{(60-2x)}(BN)_x$ systems, isoelectronic with $C_{60}$ have been explored by Extended Hukel, AM1 and ab initio methods. The polyhedral assembly energy are 7.7 kcal greater than $C_{60}$ when one B-N unit is substituted with C-C unit. The assembly energies are getting bigger if more B-N unit is introduced. We focus on HOMO-LUMO energy gap and the stability effects in $C_{(60-2x)}(BN)_x$ with different compositions of $(BN)_x$ moiety. The bonding properties of the substituent atoms were investigated in detail.

Keywords

References

  1. Broderick, W. E. J. Am. Chem. Soc. 1994, 116, 5489. https://doi.org/10.1021/ja00091a071
  2. Allemand, P. M.; Khemani, K. C.; Koch, A. S.; Wudl, F.; Holczer, K.; Donovan, S.; Gruner, G.; Thompson, J. D. Science 1993, 253, 301. https://doi.org/10.1126/science.253.5017.301
  3. Wang, Y. Nature 1992, 356, 585. https://doi.org/10.1038/356585a0
  4. Meilunas, R. J.; Chang, R. P. H.; Liu, S. Z.; Kappes, M. M. Appl. Phys. Lett. 1991, 59, 3461. https://doi.org/10.1063/1.105678
  5. Ruoff, R. F.; Lorents, D. C.; Chan, B.; Malhorta, R.; Subramoney, S. Science 1993, 259, 346. https://doi.org/10.1126/science.259.5093.346
  6. Hamza, A. V.; Balooch, M.; Tench, R. J.; Schildbach, M. A. J. Vac. Sci. Technol. B 1993, 11, 763. https://doi.org/10.1116/1.586784
  7. Hebard, A. F.; Eom, C. B.; Fleming, R. M.; Chabal, Y. J. Appl. Phys. A Solids & Surf. 1993, 57, 299.
  8. Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  9. Ajayan, P. M.; Iijima, S. Nature 1993, 361, 333. https://doi.org/10.1038/361333a0
  10. Margulis, L.; Salitra, G.; Tenne, R.; Talianker, M. Nature 1993, 365, 113.
  11. Hwang, K. C.; Mauzerall, D. Nature 1993, 361, 138. https://doi.org/10.1038/361138a0
  12. Guo, T.; Jin, C.; Smalley, R. E. J. Phys. Chem. 1991, 95, 4948. https://doi.org/10.1021/j100166a010
  13. Chai, Y.; Guo, T.; Jin, C.; Haufler, R. E.; Chibante, J. P. F.; Fure, J.; Wang, L.; Alford, J. M.; Smalley, R. E. J. Phys. Chem. 1991, 95, 7564. https://doi.org/10.1021/j100173a002
  14. O'Brien, S. C.; Heath, J. R.; Curl, R. F.; Smalley, R. E. J. Chem. Phys. 1988, 88, 220. https://doi.org/10.1063/1.454640
  15. Radi, P. P.; Hsu, M.-T.; Rincon, M. E.; Kemper, P. R.; Bowers, M. T. Chem. Phys. Lett. 1990, 174, 223. https://doi.org/10.1016/0009-2614(90)85336-B
  16. Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. Nature 1990, 347, 354. https://doi.org/10.1038/347354a0
  17. Chen, F.; Singh, D.; Jansen, S. A. J. Phys. Chem. 1993, 97, 10958. https://doi.org/10.1021/j100144a011
  18. Saito, T.; Akita, Y.; Kobayashi, H.; Tanaka, K. Syn. Met. 2000, 108, 67. https://doi.org/10.1016/S0379-6779(99)00181-2
  19. Andreoni, W.; Gygi, F.; Parrinello, M. Chem. Phys. Lett. 1992, 190, 159. https://doi.org/10.1016/0009-2614(92)85318-5
  20. Andreoni, W.; Curioni, A.; Holczer, K.; Prassides, K.; Keshavarz, K. M.; Hummelen, K. J. C.; Wudl, F. J. Am. Chem. Soc. 1996, 118, 11335. https://doi.org/10.1021/ja962279i
  21. Brown, C. M.; Cristofolini, L.; Kordatos, K.; Prassides, K.; Bellevia, C.; Gonzalez, R.; Keshavarz, K. M.; Wudl, F.; Cheetham, A. K.;. Zhang, J. P.; Andreoni, W.; Curioni, A.; Fitch, A. N. ; Pattison, P. Chem. Mater. 1996, 8, 2548. https://doi.org/10.1021/cm960354i
  22. Pichler, T.; Knupfer, M.; Golden, M. S.; Haffner, S.; Friedlein, R.; Fink, J.; Andreoni, W.; Curioni, A.; Keshavarz, K. M.; Bellavia-Lund, C.; Sastre, A.; Hummelen, J. C.; Wudl, F. Phys. Rev. Lett. 1997, 78, 4249. https://doi.org/10.1103/PhysRevLett.78.4249
  23. Butcher, M. J.; Jones, F. H.; Moriatry, P.; Benton, P. H.; Prassides, K.; Kordatos, K.; Tagmatarchis, N. Appl. Phys. Lett. 1999, 75, 1074. https://doi.org/10.1063/1.124601
  24. Esfarjani, K.; Ohno, K.; Kawazoe, Y. Phys. Rev. B 1994, 50, 50. https://doi.org/10.1103/PhysRevE.50.50
  25. Sevov, C. S.; Corbett, J. D. Science 1993, 262, 880. https://doi.org/10.1126/science.262.5135.880
  26. Wells, A. F. Structual Inorganic Chemistry, 5th. Ed.; Crendon Press: Oxford, 1984.
  27. Harshbarger, W.; Lee, G. H.; Porter, R. F.; Bauer, S. H. Inorg. Chem. 1969, 8, 1683. https://doi.org/10.1021/ic50078a023
  28. Harshbarger, W.; Lee, G. H.; Porter, R. F.; Bauer, S. H. J. Am. Chem. Soc. 1969, 91, 551. https://doi.org/10.1021/ja01031a004
  29. Goldstein, P.; Jacobson, R. A. J. Am. Chem. Soc. 1962, 84, 2457.
  30. Chang, C. H.; Porter, R. F.; Bauer, S. H. Inorg. Chem. 1969, 8, 1677. https://doi.org/10.1021/ic50078a022
  31. Yannoi, C. S.; Bernier, P. P.; Bethune, D. S.; Meijer, G.; Salem, J. R. J. Am. Chem. Soc. 1991, 113, 3190. https://doi.org/10.1021/ja00008a068
  32. Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. https://doi.org/10.1063/1.1734456
  33. Hoffmann, R.; Lipscomb, W. M. J. Chem. Phys. 1962, 36, 3179.
  34. Anderson, A. B.; Hoffmann, R. J. Chem. Phys. 1974, 60, 4171.
  35. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Karkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.;Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.Gaussian-98; Gaussian, Inc.: Pittsburgh, PA., 1998.
  36. Kurita, N.; Kobayashi, K.; Kumahora, H.; Tago, K. Phys. Rev. B 1993, 48, 4850. https://doi.org/10.1103/PhysRevB.48.4850
  37. Kurita, N.; Kobayashi, K.; Kumahora, H.; Tago, K.; Ozawa, K. Chem. Phys. Lett. 1992, 198, 95. https://doi.org/10.1016/0009-2614(92)90054-Q
  38. Andreoni, W.; Gygi, F.; Parrinello, M. Chem. Phys. Lett. 1992, 190, 159. https://doi.org/10.1016/0009-2614(92)85318-5
  39. Pradeep, T.; Vijayakrishinan, V.; Santra, A. K.; Rao, C. N. R. J. Phys. Chem. 1991, 95, 10564. https://doi.org/10.1021/j100179a015
  40. Wade, K.; Oneill, M. E. In Comprehensive OrganometallicChemistry; Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Eds.;Pergammon: London, 1982; Vol 1, p 10.
  41. Harris, J. Phys. Rev. B 1985, 31, 1770. https://doi.org/10.1103/PhysRevB.31.1770

Cited by

  1. B-N as a C-C substitute in aromatic systems vol.87, pp.1, 2009, https://doi.org/10.1139/v08-110
  2. Interaction with a BN Nano-Cage vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3338
  3. Influence of NO2 attachment on the nuclear magnetic shielding tensors of N and B nuclei in C30B15N15 heterofullerene: a DFT study vol.39, pp.8, 2013, https://doi.org/10.1007/s11164-012-0886-1
  4. -like boron carbide and carbon nitride fullerenes: Stability and electronic properties obtained by DFT methods vol.26, pp.1, 2018, https://doi.org/10.1080/1536383X.2017.1402006
  5. Fullerene-like boron nitride cages BxNy (x + y = 28): stabilities and electronic properties from density functional theory computation vol.25, pp.1, 2019, https://doi.org/10.1007/s00894-018-3902-6
  6. Single Organic Molecules Designed as Nanoscale Connectors: Fullerene Isoxazoline Derivatives vol.25, pp.12, 2003, https://doi.org/10.5012/bkcs.2004.25.12.1850
  7. Designing Novel Zn-Decorated Inorganic B12P12 Nanoclusters with Promising Electronic Properties: A Step Forward toward Efficient CO2 Sensing Materials vol.5, pp.25, 2003, https://doi.org/10.1021/acsomega.0c01686