DOI QR코드

DOI QR Code

Photoelectrochemical Studies of Nanocrystalline TiO₂Film Electrodes

  • Published : 2003.08.20

Abstract

Nanocrystalline semiconductor film electrodes have been prepared by sintering three different sizes of TiO₂ nanoparticle sols on conducting indium-tin-oxide (ITO) glass substrate. The electrochemical and photoelectrochemical properties of the prepared electrodes were comparatively investigated. The particle sizes, surface morphologies and crystallinities of the films were studied by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Cyclic voltammetry and capacitance measurements in the dark implies the formation of depletion layer in the semiconductor films which was usually neglected in the previous studies and shows that flat band potential ($E_{fb}$

Keywords

References

  1. Desilvestro, J.; Gratzel, M.; Kavan, L.; Moser, J. J. Am. Chem.Soc. 1985, 107, 2988. https://doi.org/10.1021/ja00296a035
  2. Vrachnou, E.; Vlachopoulos, N.; Gratzel,M. J. Chem. Soc. Chem. Commun. 1987, 868.
  3. Kalyanasundram,K.; Vlachopoulos, N.; Krishnan, V.; Monnier, A.; Gratzel, M. J.Phys. Chem. 1987, 91, 2342. https://doi.org/10.1021/j100293a027
  4. Vlachopoulos, N.; Liska, P.;Augustynski, J.; Gratzel, M. J. Am. Chem. Soc. 1988, 110, 1216. https://doi.org/10.1021/ja00212a033
  5. O'Regan, B.; Moser, J.; Anderson, M.; Gratzel, M. J. Phys.Chem. 1990, 94, 8720. https://doi.org/10.1021/j100387a017
  6. Nazeeruddin, M. K.; Liska, P.; Moser,J.; Vlachopoulos, N.; Gratzel, M. Helv. Chim. Acta 1990, 73, 1788. https://doi.org/10.1002/hlca.19900730624
  7. Frei, H.; Fitzmaurice, D. J.; Gratzel, M. Langmuir 1990,6, 198. https://doi.org/10.1021/la00091a032
  8. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  9. Kavan, L.; O'Regan, B.; Kay, A.; Gratzel, M. J. Electroanal.Chem. 1993, 346, 291. https://doi.org/10.1016/0022-0728(93)85020-H
  10. Nazeeruddin, M. K.; Kay, A.; Rodicio,I.; Humphry-Baker, R.; Muler, E.; Liska, P.; Vlachopoulos, N.;Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382. https://doi.org/10.1021/ja00067a063
  11. Sviridov, D. V.; Kulak, A. I. New J. Chem. 1991, 15, 539-544.
  12. Amadelli, R.; Argazzi, R.; Bignozzi, C. A.; Scandola, F. J. Am.Chem. Soc. 1990, 112, 7099. https://doi.org/10.1021/ja00176a003
  13. Murakoshi, K.; Kano, G.; Wada,Y.; Yanagida, S.; Miyazaki, H.; Matsumoto, M.; Murasawa, S. J.Electroanal. Chem. 1995, 396, 27. https://doi.org/10.1016/0022-0728(95)04185-Q
  14. Bae, J. H.; Kim, D.; Kim, Y.I.; Kim, K.-J. Bull. Korean Chem. Soc. 1997, 18, 567. https://doi.org/10.1007/BF02698307
  15. Park, N.-G.; Chang, S.-H.; Lagemaat, J.; Kim, K.-J.; Frank, A. J. Bull.Korean Chem. Soc. 2000, 21, 985.
  16. Kang, M. G.; Park, N.-G.;Chang, S. H.; Choi, S. H.; Kim, K.-J. Bull. Korean Chem. Soc.2002, 23, 140. https://doi.org/10.5012/bkcs.2002.23.1.140
  17. Hagfeldt, A.; Vlachopoulos, N.; Grazel, M. J. Electrochem. Soc.1994, 141, L82. https://doi.org/10.1149/1.2055045
  18. Huang, S.; Kavan, L.; Kay, A.; Grazel, M. J. Active PassiveElectron. Comput. 1995, 18, 23. https://doi.org/10.1155/1995/74892
  19. Huang, S.; Kavan, L.; Exnar,I.; Grazel, M. J. Electrochem. Soc. 1995, 142, L142. https://doi.org/10.1149/1.2048726
  20. Vinodgopal, K.; Hotchandani, S.; Kamat, P. V. J. Phys. Chem.1993, 97, 9040. https://doi.org/10.1021/j100137a033
  21. Hagfeldt, A.; Grazel, M. Chem. Rev. 1995, 95, 49. https://doi.org/10.1021/cr00033a003
  22. Lindstrom, H.; Rensmo, H.; Sodergren, S.; Solbrand, A.;Lindquist, S.-E. J. Phys. Chem. 1996, 100, 3084. https://doi.org/10.1021/jp951314p
  23. Azaroff, L. B. The Powder Method; McGraw Hill: New York,1958.
  24. Butler, M. A. J. Appl. Phys. 1977, 48, 1914. https://doi.org/10.1063/1.323948
  25. Koffyberg, F. P.; Dwight, K.; Wold, A. Solid State Commun. 1979,30, 433. https://doi.org/10.1016/0038-1098(79)91182-7
  26. Finklea, H. O. Semiconductor Electrodes; Elsevier: New York,1988; p 50.
  27. Kim, Y. I.; Keller, S. W.; Krueger, J. S.; Yonemoto, E. H.; Saupe,G. B.; Mallouk, T. E. J. Phys. Chem. B 1997, 101, 2491. https://doi.org/10.1021/jp962539i
  28. Finklea, H. O. Semiconductor Electrodes; Elsevier: New York,1988; p 81
  29. Kay, A.; Humphry-Baker, R.; Gratzel, M. J. Phys. Chem. 1994,98, 952. https://doi.org/10.1021/j100054a035
  30. Kavan, L.; Kratochvilova, K.; Gratzel, M. J. Electroanal. Chem.1995, 394, 93. https://doi.org/10.1016/0022-0728(95)03976-N
  31. Kavan, L; Gratzel, M.; Rathousky, J.; Zukal, A. J. Electrochem.Soc. 1996, 143, 394. https://doi.org/10.1149/1.1836455
  32. Lyon, L. A.; Hupp, J. T. J. Phys. Chem. 1995, 99, 15718. https://doi.org/10.1021/j100043a005
  33. Lemon, B. I.; Hupp, J. T. J. Phys. Chem. 1996, 100, 14578.
  34. Lemon, B. I.; Hupp, J. T. J. Phys. Chem. 1997, 101, 2426. https://doi.org/10.1021/jp961780u
  35. Finklea, H. O. Semiconductor Electrodes; Elsevier: New York,1988; p 15
  36. Morrison, S. R. Electrochemistry at Semiconductor and OxidizedMetal Electrodes; Plenum: New York, 1980; p 62.
  37. Rothenberger, G.; Fitzmaurice, D.; Grätzel, M. J. Phys. Chem.1992, 96, 5983. https://doi.org/10.1021/j100193a062
  38. Cao, F.; Oskam, G.; Searson, P. C.; Stipkala, J. M.; Heimer, T. A.;Farzad, F.; Meyer, G. J. J. Phys. Chem. 1995, 99, 11974. https://doi.org/10.1021/j100031a027
  39. Hagfeldt, A.; Bjorksten, U.; Gratzel, M. J. Phys. Chem. 1996, 100,8045. https://doi.org/10.1021/jp9518567
  40. Desplat, J.-L. J. Appl. Phys. 1976, 47, 5102. https://doi.org/10.1063/1.322473

Cited by

  1. Photoelectrochemical properties of titania nanotubes vol.19, pp.10, 2004, https://doi.org/10.1557/JMR.2004.0370
  2. Reduction vol.135, pp.40, 2013, https://doi.org/10.1021/ja4042675
  3. and ZnO nanostructures for solar-driven water splitting vol.17, pp.12, 2015, https://doi.org/10.1039/C4CP05857G
  4. < 0.3) vol.55, pp.13, 2016, https://doi.org/10.1021/acs.inorgchem.6b00712
  5. Improving the Photocurrent in Quantum-Dot-Sensitized Solar Cells by Employing Alloy PbxCd1−xS Quantum Dots as Photosensitizers vol.6, pp.6, 2016, https://doi.org/10.3390/nano6060097
  6. Electrochemical and spectroelectrochemical characterization of different mesoporous TiO2 film electrodes for the immobilization of Cytochrome c vol.12, pp.1, 2018, https://doi.org/10.1007/s11706-018-0406-3
  7. Effect of Phosphonate-Functionalized Surface Modification on Nanocrystalline TiO2 Film Electrode vol.24, pp.10, 2003, https://doi.org/10.5012/bkcs.2003.24.10.1535
  8. Preparation of Anatase TiO2 Thin Films with (OiPr)2Ti(CH3COCHCONEt2)2 Precursor by MOCVD vol.25, pp.11, 2003, https://doi.org/10.5012/bkcs.2004.25.11.1661
  9. In situ polymerization of amphiphilic diacetylene for hole transport in solid state dye-sensitized solar cells vol.7, pp.6, 2003, https://doi.org/10.1016/j.orgel.2006.07.013
  10. Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: The state of the art and a new approach vol.142, pp.1, 2008, https://doi.org/10.1016/j.cis.2008.04.003
  11. Developing photocathode materials for p-type dye-sensitized solar cells vol.7, pp.34, 2003, https://doi.org/10.1039/c9tc01822k
  12. CuCo2S4 Deposited on TiO2: Controlling the pH Value Boosts Photocatalytic Hydrogen Evolution vol.2020, pp.38, 2003, https://doi.org/10.1002/ejic.202000555