References
- Desilvestro, J.; Gratzel, M.; Kavan, L.; Moser, J. J. Am. Chem.Soc. 1985, 107, 2988. https://doi.org/10.1021/ja00296a035
- Vrachnou, E.; Vlachopoulos, N.; Gratzel,M. J. Chem. Soc. Chem. Commun. 1987, 868.
- Kalyanasundram,K.; Vlachopoulos, N.; Krishnan, V.; Monnier, A.; Gratzel, M. J.Phys. Chem. 1987, 91, 2342. https://doi.org/10.1021/j100293a027
- Vlachopoulos, N.; Liska, P.;Augustynski, J.; Gratzel, M. J. Am. Chem. Soc. 1988, 110, 1216. https://doi.org/10.1021/ja00212a033
- O'Regan, B.; Moser, J.; Anderson, M.; Gratzel, M. J. Phys.Chem. 1990, 94, 8720. https://doi.org/10.1021/j100387a017
- Nazeeruddin, M. K.; Liska, P.; Moser,J.; Vlachopoulos, N.; Gratzel, M. Helv. Chim. Acta 1990, 73, 1788. https://doi.org/10.1002/hlca.19900730624
- Frei, H.; Fitzmaurice, D. J.; Gratzel, M. Langmuir 1990,6, 198. https://doi.org/10.1021/la00091a032
- O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
- Kavan, L.; O'Regan, B.; Kay, A.; Gratzel, M. J. Electroanal.Chem. 1993, 346, 291. https://doi.org/10.1016/0022-0728(93)85020-H
- Nazeeruddin, M. K.; Kay, A.; Rodicio,I.; Humphry-Baker, R.; Muler, E.; Liska, P.; Vlachopoulos, N.;Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382. https://doi.org/10.1021/ja00067a063
- Sviridov, D. V.; Kulak, A. I. New J. Chem. 1991, 15, 539-544.
- Amadelli, R.; Argazzi, R.; Bignozzi, C. A.; Scandola, F. J. Am.Chem. Soc. 1990, 112, 7099. https://doi.org/10.1021/ja00176a003
- Murakoshi, K.; Kano, G.; Wada,Y.; Yanagida, S.; Miyazaki, H.; Matsumoto, M.; Murasawa, S. J.Electroanal. Chem. 1995, 396, 27. https://doi.org/10.1016/0022-0728(95)04185-Q
- Bae, J. H.; Kim, D.; Kim, Y.I.; Kim, K.-J. Bull. Korean Chem. Soc. 1997, 18, 567. https://doi.org/10.1007/BF02698307
- Park, N.-G.; Chang, S.-H.; Lagemaat, J.; Kim, K.-J.; Frank, A. J. Bull.Korean Chem. Soc. 2000, 21, 985.
- Kang, M. G.; Park, N.-G.;Chang, S. H.; Choi, S. H.; Kim, K.-J. Bull. Korean Chem. Soc.2002, 23, 140. https://doi.org/10.5012/bkcs.2002.23.1.140
- Hagfeldt, A.; Vlachopoulos, N.; Grazel, M. J. Electrochem. Soc.1994, 141, L82. https://doi.org/10.1149/1.2055045
- Huang, S.; Kavan, L.; Kay, A.; Grazel, M. J. Active PassiveElectron. Comput. 1995, 18, 23. https://doi.org/10.1155/1995/74892
- Huang, S.; Kavan, L.; Exnar,I.; Grazel, M. J. Electrochem. Soc. 1995, 142, L142. https://doi.org/10.1149/1.2048726
- Vinodgopal, K.; Hotchandani, S.; Kamat, P. V. J. Phys. Chem.1993, 97, 9040. https://doi.org/10.1021/j100137a033
- Hagfeldt, A.; Grazel, M. Chem. Rev. 1995, 95, 49. https://doi.org/10.1021/cr00033a003
- Lindstrom, H.; Rensmo, H.; Sodergren, S.; Solbrand, A.;Lindquist, S.-E. J. Phys. Chem. 1996, 100, 3084. https://doi.org/10.1021/jp951314p
- Azaroff, L. B. The Powder Method; McGraw Hill: New York,1958.
- Butler, M. A. J. Appl. Phys. 1977, 48, 1914. https://doi.org/10.1063/1.323948
- Koffyberg, F. P.; Dwight, K.; Wold, A. Solid State Commun. 1979,30, 433. https://doi.org/10.1016/0038-1098(79)91182-7
- Finklea, H. O. Semiconductor Electrodes; Elsevier: New York,1988; p 50.
- Kim, Y. I.; Keller, S. W.; Krueger, J. S.; Yonemoto, E. H.; Saupe,G. B.; Mallouk, T. E. J. Phys. Chem. B 1997, 101, 2491. https://doi.org/10.1021/jp962539i
- Finklea, H. O. Semiconductor Electrodes; Elsevier: New York,1988; p 81
- Kay, A.; Humphry-Baker, R.; Gratzel, M. J. Phys. Chem. 1994,98, 952. https://doi.org/10.1021/j100054a035
- Kavan, L.; Kratochvilova, K.; Gratzel, M. J. Electroanal. Chem.1995, 394, 93. https://doi.org/10.1016/0022-0728(95)03976-N
- Kavan, L; Gratzel, M.; Rathousky, J.; Zukal, A. J. Electrochem.Soc. 1996, 143, 394. https://doi.org/10.1149/1.1836455
- Lyon, L. A.; Hupp, J. T. J. Phys. Chem. 1995, 99, 15718. https://doi.org/10.1021/j100043a005
- Lemon, B. I.; Hupp, J. T. J. Phys. Chem. 1996, 100, 14578.
- Lemon, B. I.; Hupp, J. T. J. Phys. Chem. 1997, 101, 2426. https://doi.org/10.1021/jp961780u
- Finklea, H. O. Semiconductor Electrodes; Elsevier: New York,1988; p 15
- Morrison, S. R. Electrochemistry at Semiconductor and OxidizedMetal Electrodes; Plenum: New York, 1980; p 62.
- Rothenberger, G.; Fitzmaurice, D.; Grätzel, M. J. Phys. Chem.1992, 96, 5983. https://doi.org/10.1021/j100193a062
- Cao, F.; Oskam, G.; Searson, P. C.; Stipkala, J. M.; Heimer, T. A.;Farzad, F.; Meyer, G. J. J. Phys. Chem. 1995, 99, 11974. https://doi.org/10.1021/j100031a027
- Hagfeldt, A.; Bjorksten, U.; Gratzel, M. J. Phys. Chem. 1996, 100,8045. https://doi.org/10.1021/jp9518567
- Desplat, J.-L. J. Appl. Phys. 1976, 47, 5102. https://doi.org/10.1063/1.322473
Cited by
- Photoelectrochemical properties of titania nanotubes vol.19, pp.10, 2004, https://doi.org/10.1557/JMR.2004.0370
- Reduction vol.135, pp.40, 2013, https://doi.org/10.1021/ja4042675
- and ZnO nanostructures for solar-driven water splitting vol.17, pp.12, 2015, https://doi.org/10.1039/C4CP05857G
- < 0.3) vol.55, pp.13, 2016, https://doi.org/10.1021/acs.inorgchem.6b00712
- Improving the Photocurrent in Quantum-Dot-Sensitized Solar Cells by Employing Alloy PbxCd1−xS Quantum Dots as Photosensitizers vol.6, pp.6, 2016, https://doi.org/10.3390/nano6060097
- Electrochemical and spectroelectrochemical characterization of different mesoporous TiO2 film electrodes for the immobilization of Cytochrome c vol.12, pp.1, 2018, https://doi.org/10.1007/s11706-018-0406-3
- Effect of Phosphonate-Functionalized Surface Modification on Nanocrystalline TiO2 Film Electrode vol.24, pp.10, 2003, https://doi.org/10.5012/bkcs.2003.24.10.1535
- Preparation of Anatase TiO2 Thin Films with (OiPr)2Ti(CH3COCHCONEt2)2 Precursor by MOCVD vol.25, pp.11, 2003, https://doi.org/10.5012/bkcs.2004.25.11.1661
- In situ polymerization of amphiphilic diacetylene for hole transport in solid state dye-sensitized solar cells vol.7, pp.6, 2003, https://doi.org/10.1016/j.orgel.2006.07.013
- Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: The state of the art and a new approach vol.142, pp.1, 2008, https://doi.org/10.1016/j.cis.2008.04.003
- Developing photocathode materials for p-type dye-sensitized solar cells vol.7, pp.34, 2003, https://doi.org/10.1039/c9tc01822k
- CuCo2S4 Deposited on TiO2: Controlling the pH Value Boosts Photocatalytic Hydrogen Evolution vol.2020, pp.38, 2003, https://doi.org/10.1002/ejic.202000555