DOI QR코드

DOI QR Code

DFT Calculation on the Electron Affinity of Polychlorinated Dibenzo-p-dioxins

  • Lee, Jung-Eun (School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Choi, Won-Yong (School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Mhin, Byung-Jin (Department of Chemistry, PaiChai University)
  • Published : 2003.06.20

Abstract

Polychlorinated dibenzo-p-dioxins (PCDDs) are extremely toxic and persistent environmental pollutants. Their chemical reactivities and other physicochemical/biological properties show a strong dependence on the chlorination pattern. With increasing the number of chlorines, dioxin congeners become more electronegative and gain higher electron affinities. The vertical electron affinities (VEA) are related with the LUMO energies of neutral molecules. LUMO energies of all PCDD congeners were calculated at the B3LYP/6-31G** level and those of some selected congeners at the level of B3LYP/6-311G**//B3LYP/6-31G** and B3LYP/cc-pvtz/ /B3LYP/6-31G**. The total energies of neutral and anionic species for dibenzo-p-dioxins (DD), 1469-TCDD, 2378-TCDD, and OCDD were calculated at the level of B3LYP/6-31G**, B3LYP/aug-cc-pvdz, and B3LYP/ aug-cc-pvtz//B3LYP/6-31G**. By using the four congeners with D2h symmetry as reference molecules, we could estimate VEA (B3LYP/aug-cc-pvdz) of 75 PCDD congeners based on the linear correlations between LUMO energy and VEA (B3LYP/6-31G**) and between VEA (B3LYP/6-31G**) and VEA (B3LYP/aug-ccpvtz// B3LYP/6-31G**). Results show that all PCDDs with the number of Cl ≥ 3 have positive electron affinities. The PCDD electron affinity values provided in this work can be a useful data set in understanding the congener-specific reactivities of dioxins in various environmental media.

Keywords

References

  1. Chlorinated Dioxins and Dibenzofurans in the Total Environment;Choudhary, G., Keith, L. H., Rappe, C., Eds.; Butterworth Publishers:Boston, 1983.
  2. Dioxin and Health; Schecter, A., Ed.; Plenum Press: New York,U. S. A., 1994.
  3. Olie, K.; Vermeulen, P. L.; Hutzinger, O. Chemosphere 1977, 6,455. https://doi.org/10.1016/0045-6535(77)90035-2
  4. Bacher, R.; Swerev, M.; Ballschmiter, B. Environ. Sci. Technol.1992, 26, 1649. https://doi.org/10.1021/es00032a025
  5. Addink, R.; Govers, H. A. J.; Olie, K. Environ. Sci. Technol. 1998,32, 1888. https://doi.org/10.1021/es971077z
  6. Yasuhara, A.; Katami, T.; Okuda, T.; Ohno, N.; Shibamoto, T.Environ. Sci. Technol. 2001, 35, 1373. https://doi.org/10.1021/es001210e
  7. Brubaker, W. W.; Hites, R. A. J. Phys. Chem. A 1998, 102, 915. https://doi.org/10.1021/jp9721199
  8. Atkinson, R. In Issues in Environmental Science and Technology;Hester, R. E., Harrison, R. M., Eds.; The Royal Society of Chemistry:Cambridge, U.K., 1996; Vol. 6, p 53.
  9. Baker, J. I.; Hites, R. A. Environ. Sci. Technol. 2000, 34, 2879. https://doi.org/10.1021/es9912325
  10. Safe, S. Crit. Rev. Toxicol. 1990, 21, 51. https://doi.org/10.3109/10408449009089873
  11. Mason, G.; Farrell, K.; Keys, B.; Piskorska-Pliszczynska, J.; Safe,L.; Safe, S. Toxicology 1986, 41, 21. https://doi.org/10.1016/0300-483X(86)90101-0
  12. Mhin, B. J.; Lee, J. E.; Choi, W. J. Am. Chem. Soc. 2002, 124,144. https://doi.org/10.1021/ja016913q
  13. Mhin, B. J.; Choi, J.; Choi, W. J. Am. Chem. Soc. 2001, 123, 3584. https://doi.org/10.1021/ja0055615
  14. Lee, J. E.; Choi, W.; Mhin, B. J. J. Phys. Chem. A 2003, 107,2693. https://doi.org/10.1021/jp027133m
  15. Choi, W.; Hong, S. J.; Chang, Y.-S.; Cho, Y. Environ. Sci. Technol.2000, 34, 4810. https://doi.org/10.1021/es0011461
  16. Kwok, E. S. C.; Arey, J.; Atkinson, R. Environ. Sci. Technol. 1994,28, 528. https://doi.org/10.1021/es00052a028
  17. Addink, R.; Olie, K. Environ. Sci. Technol. 1995, 29, 1425. https://doi.org/10.1021/es00006a002
  18. Huang, C.-L.; Harrison, B. K.; Madura, J.; Dolfing, J. Environ.Toxicol. Chem. 1996, 15, 824. https://doi.org/10.1002/etc.5620150603
  19. Koester, C. J.; Hites, R. A. Chemosphere 1988, 17, 2355. https://doi.org/10.1016/0045-6535(88)90146-4
  20. Saito, N.; Fuwa, A. Chemosphere 2000, 40, 131. https://doi.org/10.1016/S0045-6535(99)00215-5
  21. Unsworth, J. F.; Dorans, H. Chemosphere 1993, 27, 351. https://doi.org/10.1016/0045-6535(93)90312-S
  22. Lynam, M. M.; Kuty, M.; Damborsky, J.; Koca, J.; Adriaens, P.Environ. Toxicol. Chem. 1998, 17, 988. https://doi.org/10.1002/etc.5620170603
  23. Cheney, B. V.; Tolly, T. Int. J. Quantum Chem. 1979, 16, 87. https://doi.org/10.1002/qua.560160113
  24. Berkout, V. D.; Mazurkiewicz, P.; Deinzer, M. L. J. Am. Chem.Soc. 1999, 121, 2561. https://doi.org/10.1021/ja981639u
  25. Arulmozhiraja, S.; Fujii, T.; Tokiwa, H. J. Phys. Chem. A 2000,104, 7068. https://doi.org/10.1021/jp994237x
  26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery,J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J.M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.;Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck,A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.;Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.Gaussian 98, Revision A.9; Gaussian, Inc.; Pittsburgh, PA, 2000.
  27. Horny, L.; Petraco, N. D. K.; Schaefer, H. F. J. Am. Chem. Soc.2002, 124, 14716. https://doi.org/10.1021/ja0210190
  28. Richardson, N. A.; Wesolowski, S. S.; Schaefer, H. F. J. Phys.Chem. B 2003, 107, 848. https://doi.org/10.1021/jp022111l
  29. Adriaens, P.; Chang, P. R.; Barkovskii, A. L. Chemosphere 1996,32, 433. https://doi.org/10.1016/0045-6535(95)00231-6
  30. Barkovskii, A. L.; Adriaens, P. Appl. Environ. Microbiol. 1996,62, 4556.
  31. Adriaens, P.; Fu, Q.; Grbic-Galic, D. Environ. Sci. Technol. 1995,29, 2252. https://doi.org/10.1021/es00009a015
  32. Konstantinov, A.; Bunce, N. J. J. Photochem. Photobiol. A: Chem.1996, 94, 27. https://doi.org/10.1016/1010-6030(95)04174-5
  33. Ohachi, M. O.; Tsujimoto, K.; Seki, K. J. C. S. Chem. Comm.1973, 389, 384.
  34. Bunce, N. J.; Safe, S.; Ruzo, L. O. J. C. S. Perkin I 1975, 1607.

Cited by

  1. Correlation of the first reduction potential of selected radiosensitizers determined by cyclic voltammetry with theoretical calculations vol.76, pp.8, 2011, https://doi.org/10.1135/cccc2011067
  2. Preparation of robust, flexible, transparent films from partially aliphatic copolyimides vol.23, pp.6, 2015, https://doi.org/10.1007/s13233-015-3073-6
  3. Structure-property relationship study of partially aliphatic copolyimides for preparation of flexible and transparent polyimide films vol.54, pp.2, 2017, https://doi.org/10.1080/10601325.2016.1261622
  4. Catalytic Conversions of Polychlorinated Benzenes and Dioxins with Low-chlorine Using V2O5/TiO2 vol.120, pp.3-4, 2008, https://doi.org/10.1007/s10562-007-9283-6
  5. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  6. Quantum Chemical Investigation of Polychlorinated Dibenzodioxins, Dibenzofurans and Biphenyls: Relative Stability and Planarity Analysis vol.25, pp.23, 2003, https://doi.org/10.3390/molecules25235697