DOI QR코드

DOI QR Code

Application of Methane Mixed Plasma for the Determination of Ge, As, and Se in Serum and Urine by ICP/MS

  • Park, Kyung-Su (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Kim, Sun-Tae (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Kim, Young-Man (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Kim, Yun-je (Doping Control Center, Korea Institute of Science and Technology) ;
  • Lee, Won (Research Institute for Basic Sciences and Department of Chemistry, Kyunghee University)
  • Published : 2003.03.20

Abstract

An analytical method for the simultaneous determination of trace Ge, As and Se in biological samples by inductively coupled plasma/mass spectrometry has been investigated. The effects of added organic gas into the coolant argon gas on the analyte signal were studied to improve the detection limit, accuracy and precision. The addition of a small amount of methane (10 mL/min.) into the coolant gas channel improved the ionization of Ge, As and Se. The analytical sensitivity of the proposed Ar/CH₄system was superior by at least two-fold to that of the conventional Ar method. In the present method, the detection limits obtained for Ge, As and Se were 0.014, 0.012 and 0.064 ㎍/L, respectively. The analytical reliability of the proposed method was evaluated by analyzing the certified standard reference materials (SRM). Recoveries of 99.9% for Ge, 103% for As, 96.5% for Se were obtained for NIST SRM of freeze dried urine sample. The proposed method was also applied to the biological samples.

Keywords

References

  1. Park, K. S.; Kim, S. T.; Kim, Y. M.; Kim, Y. J.; Lee, W. Bull. Korean Chem. Soc. 2002, 23, 1389. https://doi.org/10.5012/bkcs.2002.23.10.1389
  2. Montaser, A.; Ishii, I.; Palmer, B. A.; Layman, L. R. Spectrochim. Acta, Part B 1990, 45, 603. https://doi.org/10.1016/0584-8547(90)80135-6
  3. Houk, R. S.; Montaser, A.; Fassel, V. A. Appl. Spectrosc. 1983, 37, 425. https://doi.org/10.1366/0003702834634848
  4. Choot, E. H.; Horlick, G. Spectrochim. Acta, Part B 1986, 41, 935. https://doi.org/10.1016/0584-8547(86)80097-0
  5. Choot, E. H.; Horlick, G. Spectrochim. Acta, Part B 1986, 41, 889. https://doi.org/10.1016/0584-8547(86)80094-5
  6. Choot, E. H.; Horlick, G. Spectrochim. Acta, Part B 1986, 41, 907. https://doi.org/10.1016/0584-8547(86)80095-7
  7. Choot, E. H.; Horlick, G. Spectrochim. Acta, Part B 1986, 41, 925. https://doi.org/10.1016/0584-8547(86)80096-9
  8. Ishii, I.; Golightly, D. W.; Montaser, A. J. Analyt. Atom. Spectrom. 1988, 3, 965. https://doi.org/10.1039/ja9880300965
  9. Fannin, H. B.; Seliskar, C. J. Appl. Spectrosc. 1987, 41, 1216. https://doi.org/10.1366/0003702874447545
  10. Abdallah, M. H.; Mermet, J. M. J. Quant. Spectrosc. Radiat. Transfer 1978, 19, 83. https://doi.org/10.1016/0022-4073(78)90042-0
  11. Walters, P. E.; Barnardt, C. A. Spectrochim. Acta, Part B 1988, 43, 325. https://doi.org/10.1016/0584-8547(88)80062-4
  12. Batal, A.; Jarosz, J.; Mermet, J. M. Spectrochim. Acta, Part B 1982, 37, 511. https://doi.org/10.1016/0584-8547(82)80025-6
  13. Lam, J. W. H.; Horlick, G. Spectrochim. Acta, Part B 1990, 45, 1313. https://doi.org/10.1016/0584-8547(90)80185-L
  14. Lam, J. W. H.; Horlick, G. Spectrochim. Acta, Part B 1990, 45, 1327. https://doi.org/10.1016/0584-8547(90)80186-M
  15. Alder, J. F.; Mermet, J. M. Spectrochim. Acta, Part B 1973, 23, 421.
  16. Long, G. L.; Winefordner, J. D. Appl. Spectrosc. 1984, 38, 563. https://doi.org/10.1366/0003702844555179
  17. Demers, D. R. Spectrochim. Acta, Part B 1985, 40, 93. https://doi.org/10.1016/0584-8547(85)80013-6
  18. Evans, E. H.; Giglio, J. J. J. Anal. At. Spectrom. 1993, 8, 1. https://doi.org/10.1039/ja9930800001
  19. Vanhoe, H.; Goossens, J.; Moens, L.; Dams, R. J. Anal. At. Spectrom. 1994, 9, 177. https://doi.org/10.1039/ja9940900177
  20. Munro, S.; Ebdon, L.; McWeeny, D. J. J. Anal. At. Spectrom. 1986, 1, 211. https://doi.org/10.1039/ja9860100211
  21. Amarasiriwardena, C. J.; Lupoli, N.; Korrick, S.; Hu, H.; Potula, V. Analyst 1998, 123, 441. https://doi.org/10.1039/a704686c
  22. Peter, F.; Growcock, G.; Strung, G. Anal. Chim. Acta 1979, 104, 177. https://doi.org/10.1016/S0003-2670(01)83829-0
  23. Watkinson, J. H. Am. J. Clin. Nutr. 1981, 34, 936.

Cited by

  1. Direct Determination of Tellurium in Geological Samples by Inductively Coupled Plasma Mass Spectrometry Using Ethanol as a Matrix Modifier vol.60, pp.7, 2006, https://doi.org/10.1366/000370206777887008
  2. Improving the analytical capabilities of femtosecond laser ablation multicollector ICP-MS for high precision Pb isotopic analysis: the role of hydrogen and nitrogen vol.25, pp.7, 2010, https://doi.org/10.1039/c003879b
  3. Influence of methane addition on selenium isotope sensitivity and their spectral interferences vol.46, pp.2, 2011, https://doi.org/10.1002/jms.1880
  4. Effects of methane addition to nebulizer gas on polyatomic interferents and ion sensitivity in inductively coupled plasma mass spectrometry vol.29, pp.1, 2014, https://doi.org/10.1039/C3JA50221J
  5. Determination of Trace Levels of Elements in Urine by Inductively Coupled Plasma Mass Spectrometry vol.50, pp.2, 2004, https://doi.org/10.1248/jhs.50.164
  6. Direct determination of P, V, Mn, As, Mo, Ba and U in seawater by SF-ICP-MS vol.22, pp.9, 2007, https://doi.org/10.1039/b617597j
  7. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas vol.23, pp.8, 2008, https://doi.org/10.1039/b804760j
  8. Improved multi-elemental analyses by inductively coupled plasma-sector field mass spectrometry through methane addition to the plasma vol.20, pp.11, 2003, https://doi.org/10.1039/b507886e
  9. Methane mixed plasma—improved sensitivity of inductively coupled plasma mass spectrometry detection for selenium speciation analysis of wheat-based food vol.22, pp.4, 2003, https://doi.org/10.1039/b614966a
  10. Highly sensitive determination of dissolved ultra-trace phosphorus by ICP-MS with methane mixed plasma vol.36, pp.2, 2003, https://doi.org/10.1039/d0ja00462f