DOI QR코드

DOI QR Code

Interaction of Norfloxacin with Super-Coiled DNA

  • Hwangbo, Hyun-Jung (Department of Chemistry, Yeungnam University) ;
  • Lee, Young-Ae (Department of Chemistry, Yeungnam University) ;
  • Park, Jung-Hag (Department of Chemistry, Yeungnam University) ;
  • Lee, Yong-Rok (School of Chemical Engneering and Technology, Yeungnam University) ;
  • Kim, Jong-Moon (Division of Life and Molecular Sciences, Pohang University of Science and Technology) ;
  • Yi, Seh-Yoon (Applied Chemistry Major, Dongduk Women's University) ;
  • Kim, Seog K. (Department of Chemistry, Yeungnam University)
  • Published : 2003.05.20

Abstract

Norfloxacin, that inhibits the action of topoisomerase Ⅱ, binds to wide variety of DNA. The binding mode of this drug to double- and super-coiled DNA (ds- and scDNA) is compared in this study by various spectroscopic methods, including absorption, fluorescence, and circular dichroism(CD) spectroscopy. Hypochromism in the absorption band, negative and positive induced CD bands (respectively in 240-260 nm and 270-300 nm region) are apparent for the norfloxacin that bound to both the dsDNA and scDNA. A decrease in fluorescence is also noticed in the presence of both DNAs. Since the spectroscopic characteristics are the same for both complexes, it is imperative that the binding mode of the norfloxacin is similar in ds- and scDNA. In the presence of $Mg^{2+}$, which is a cofactor in the topoisomerase Ⅱ action, the fluorescence intensity of the scDNA-norfloxacin complex increased and the resulting fluorescence intensity and shape was identical to that in the absence of scDNA. Therefore, the addition of an excess amount of $Mg^{2+}$ may result in the extrusion of norfloxacin from scDNA.

Keywords

References

  1. Hooper, D. C.; Wolfson, J. S. Quinolone Antimicrobial Agents, 2nd ed.; American Society of Microbiology: Washington, DC, U.S.A., 1995.
  2. Wang, J. C. Annu. Rev. Biochem. 1985, 54, 665. https://doi.org/10.1146/annurev.bi.54.070185.003313
  3. Greenwood, D. In Antimicrobial Chemotherapy; Greenwood, D., Ed.; Oxford University Press: Oxford, U.K., 1989; p 46.
  4. Shen, L. L.; Pernet, A. G. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 307. https://doi.org/10.1073/pnas.82.2.307
  5. Shen, L. L.; Kohlbrenner, W. E.; Weigl, D.; Baranowski, J. J. Biol. Chem. 1989, 264, 2973.
  6. Shen, L. L.; Baranowski, J.; Pernet, A. G. Biochemistry 1989, 28, 3879. https://doi.org/10.1021/bi00435a038
  7. Shen, L. L.; Mitscher, L. A.; Sharma, P. N.; O'Donnekk, T. J.; Chu, D. W. T.; Cooper, C. S. Biochemisty 1989, 28, 3886. https://doi.org/10.1021/bi00435a039
  8. Son, G.-W.; Yeo, J.-A.; Kim, M.-S.; Kim, S. K.; Holmen, A.; Åkerman, B.; Norden, B. J. Am. Chem. Soc. 1998, 120, 6451. https://doi.org/10.1021/ja9734049
  9. Lee, E.-J.; Yeo, J.-A.; Lee, G.-J.; Han, S. W.; Kim, S. K. Eur. J. Biochem. 2000, 267, 6018. https://doi.org/10.1046/j.1432-1327.2000.01677.x
  10. Lee, E.-J.; Yeo, J.-A.; Jung, K.; Hwangbo, H. J.; Lee, G.-J.; Kim, S. K. Arch. Biochem. Biophys. 2001, 395, 21. https://doi.org/10.1006/abbi.2001.2563
  11. Lee, H. M.; Kim, J.-K.; Kim, S. K. J. Biomol. Str. Dyn. 2002, 19, 1083. https://doi.org/10.1080/07391102.2002.10506811
  12. Son, G.-S.; Yeo, J.-A.; Kim J.-M.; Kim, S. K.; Moon, H.-R.; Nam, W.-W. Biophys. Chem. 1998, 74, 225. https://doi.org/10.1016/S0301-4622(98)00178-1
  13. Yeo, J.-A.; Cho, T.-S.; Kim, S. K.; Moon, H.-R.; Jhon, G.-J.; Nam, W.-W. Bull. Korean Chem. Soc. 1998, 19, 449.
  14. Bailly, C.; Colson, P.; Houssier, C. Biochem. Bioph. Res. Commun. 1998, 243, 844. https://doi.org/10.1006/bbrc.1998.8189
  15. Palù, G.; Valisena, S.; Peracchi, M.; Palumbo, M. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 9671. https://doi.org/10.1073/pnas.89.20.9671
  16. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum Press: New York, U. S. A., 1983; p 257.
  17. Lyng, R.; Rodger, A.; Nordén, B. Biopolymer 1991, 31, 1709. https://doi.org/10.1002/bip.360311405
  18. Lyng, R.; Rodger, A.; Nordén, B. Biopolymer 1992, 32, 1201. https://doi.org/10.1002/bip.360320910
  19. Sissi, C.; Perdona, E.; Domenici, E.; Feriani, A.; Howells, A. J.; Maxwell, A.; Palumbo, M. J. Mol. Biol. 2001, 311, 195. https://doi.org/10.1006/jmbi.2001.4838
  20. Wu, S.; Zhang, W.; Chen, X.; Hu, Z.; Hooper, M.; Hooper, B.; Zhao, Z. Spectochimica Acta Part A 2001, 57, 1317. https://doi.org/10.1016/S1386-1425(01)00385-7

Cited by

  1. Thermodynamic Investigation of the Formation of Complexes between Norfloxacin and Various Mononucleotides vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3233
  2. Spectroscopic studies on the interaction between norfloxacin and FNC, 2′-deoxy-β-fluoro-4′-azidocytidine: analytical application for determination of FNC vol.6, pp.9, 2014, https://doi.org/10.1039/c3ay41499j
  3. Antibacterial activity of polymers with norfloxacin moieties against native and norfloxacin-tolerance-induced bacteria vol.96, pp.3, 2005, https://doi.org/10.1002/app.21543
  4. Absorption Study of Norfloxacin – DNA Interaction vol.265, pp.1, 2008, https://doi.org/10.1002/masy.200850529
  5. DNA Mediated Energy Transfer from 4',6-Diamidino-2-phenylindole to Ru(II)[(1,10-phenanthroline)2L]2+ : Effect of Ligand Structure vol.26, pp.4, 2003, https://doi.org/10.5012/bkcs.2005.26.4.537
  6. Sensitive luminescent determination of DNA using the terbium(III)–difloxacin complex vol.584, pp.2, 2003, https://doi.org/10.1016/j.aca.2006.11.065
  7. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  8. A Thermodynamic Study on the Interaction of Quinolone Antibiotics and DNA vol.30, pp.5, 2003, https://doi.org/10.5012/bkcs.2009.30.5.1031