References
- Park, T. G.; Hoffman, A. S. Macromolecules 1993, 26, 5045. https://doi.org/10.1021/ma00071a010
- Saito, S. J. Polym. Sci. Part A-1 1969, 7, 1789. https://doi.org/10.1002/pol.1969.150070719
- Kokufuta, E.; Zhang, Y. Q.; Tanaka, T.; Mamada, A.Macromolecules 1993, 26, 1053. https://doi.org/10.1021/ma00057a027
- Isogai, N.; Gong, J. P.; Osada, Y. Macromolecules 1996, 29, 6803. https://doi.org/10.1021/ma960335u
- Sjoberg, A.; Karlstrom, G.; Tjerneld, F. Macromolecules 1989, 22,4512. https://doi.org/10.1021/ma00202a023
- Kim, Y. H.; Kwon, I. C.; Bae, Y. H.; Kim, S. W. Macromolecules1995, 28, 939. https://doi.org/10.1021/ma00108a022
- Pandya, K.; Lad, K.; Bahadur, P. J. M. S. Pure Appl. Chem. A11993, 30, 1.
- Yang, J.; Guo, R.; Friberg, S. J. Disp. Sci. Technol. 1995, 16, 249. https://doi.org/10.1080/01932699508943677
- Crommen, J. H. L.; Schacht, E. H.; Mense, E. H. G. Biomaterials1992, 13, 601. https://doi.org/10.1016/0142-9612(92)90028-M
- Allcock, H. R.; Dudley, G. K. Macromolecules 1996, 29, 1313. https://doi.org/10.1021/ma951129+
- Tanigami, T.; Ono, T.; Suda, N.; Sakamaki, Y.; Yamaura, K.;Matsuzawa, S. Macromolecules 1989, 22, 1397. https://doi.org/10.1021/ma00193a065
- Goedemoed, J. H.; Mense, E. G. H.; Groot, D. D.; Claessen, A. M.E.; Scheper, R. J. J. Control. Rel. 1989, 170, 245.
- Crommen, J. H. L.; Schacht, E. H.; Mense, E. H. G. Biomaterials1992, 13, 511. https://doi.org/10.1016/0142-9612(92)90102-T
- Song, S.-C.; Lee, S. B.; Jin, J.-I.; Sohn, Y. S. Macromolecules1999, 32, 2188. https://doi.org/10.1021/ma981190p
- Lee, S. B.; Song, S.-C.; Jin, J.-I.; Sohn, Y. S. Macromolecules1999, 32, 7820. https://doi.org/10.1021/ma990645n
- Siegel, R. A.; Firestone, B. A. Macromolecules 1988, 21, 3254. https://doi.org/10.1021/ma00189a021
- Feil, H.; Bae, Y. H.; Feijen, J.; Kim, S. W. Macromolecules 1992,25, 5528. https://doi.org/10.1021/ma00046a063
- Kou, J. H.; Amidon, G. L.; Lee, P. I. Pharm. Res. 1988, 5, 592. https://doi.org/10.1023/A:1015998131160
- Dong, L.-C.; Hoffman, A. S. J. Control. Rel. 1991, 15, 141. https://doi.org/10.1016/0168-3659(91)90072-L
- Robinson, R. A.; Stokes, R. H. J. Phys. Chem. 1961, 65, 1954. https://doi.org/10.1021/j100828a010
- Herskovits, T. T.; Kelly, T. M. J. Phys. Chem. 1973, 77, 381. https://doi.org/10.1021/j100622a016
- Gustafsson, A.; Wennerstrom, H.; Tjerneld, F. Fluid PhaseEquilibria 1986, 29, 365. https://doi.org/10.1016/0378-3812(86)85036-1
- Aspinall, G. O. The Polysaccharides; Academic Press: New York,U.S.A., 1982; Vol. 1, Chapter 5.
- Birch, G. G.; Dziedzic, S. Z.; Shallenberger, R. S.; Lindley, M. G.J. Pharm. Sci. 1981, 70, 277. https://doi.org/10.1002/jps.2600700313
- Hudson, C. S.; Yanovsky, E. J. Am. Chem. Soc. 1917, 39, 1013. https://doi.org/10.1021/ja02250a019
- Kawasaki, H.; Sasaki, S.; Maeda, H.; Mihara, S.; Tokita, M.;Komai, T. J. Phys. Chem. 1996, 100, 16282. https://doi.org/10.1021/jp961219w
Cited by
- Reversible Association of Thermoresponsive Gold Nanoparticles: Polyelectrolyte Effect on the Lower Critical Solution Temperature of Poly(vinyl methyl ether) vol.110, pp.13, 2003, https://doi.org/10.1021/jp056675b
- The extended release properties of HPMC matrices in the presence of dietary sugars vol.138, pp.3, 2009, https://doi.org/10.1016/j.jconrel.2009.05.017
- Phase separation in aqueous solutions of polyethylaminophosphazene hydrochloride during heating vol.52, pp.11, 2003, https://doi.org/10.1134/s0965545x10110167
- Salt-Induced Thermoresponsivity of a Cationic Phosphazene Polymer in Aqueous Solutions vol.51, pp.20, 2018, https://doi.org/10.1021/acs.macromol.8b01621
- Mechanistic insights into the novel glucose-sensitive behavior of P(NIPAM-co-2-AAPBA) vol.63, pp.3, 2020, https://doi.org/10.1007/s11426-019-9680-6
- Nature of Saccharide-Induced F127 Micellar Dehydration: An Insight with FDAPT (2-Formyl-5-(4′-N,N-dimethylaminophenyl)thiophene), a Multiparametric Fluorescent Probe vol.37, pp.10, 2003, https://doi.org/10.1021/acs.langmuir.0c03284