DOI QR코드

DOI QR Code

Saccharide Effect on the Lower Critical Solution Temperature of Poly(organophosphazenes) with Methoxy-poly(ethylene glycol) and Amino Acid Esters as Side Groups

  • Lee, Sang-Beom (Division of Life Science, Korea Institute of Science and Technology) ;
  • Sohn, Youn-Soo (Department of Chemistry, Ewha Womans University) ;
  • Song, Soo-Chang (Division of Life Science, Korea Institute of Science and Technology)
  • Published : 2003.07.20

Abstract

The lower critical solution temperature (LCST) of thermosensitive poly(organophosphazenes) with methoxypoly(ethylene glycol) (MPEG) and amino acid esters as side groups was studied as a function of saccharide concentration in aqueous solutions of mono-, di-, and polysaccharides. Most of the saccharides decreased the LCST of the polymers, and the LCST decrease was more prominently observed by saccharides containing a galactose ring, such as D-galactose, D-galactosamine and D-lactose, and also the polysacccharide, 1-6-linked D-dextran effectively decreased the LCST of the polymers. Such an effect was discussed in terms of intramolecular hydrogen bonding of saccharides in polymer aqueous solution. The saccharide effect was found to be almost independent on the kinds of the amino acid esters and MPEG length of the polymers. Such a result implies that the polymer-saccharide interaction in aqueous solution is clearly influenced by the structure of sacchardes rather than by that of the polymers. The acid saccharides such as D-glucuronic and D-lactobionic acid increased the LCST, which seems to be due to their pH effect.

Keywords

References

  1. Park, T. G.; Hoffman, A. S. Macromolecules 1993, 26, 5045. https://doi.org/10.1021/ma00071a010
  2. Saito, S. J. Polym. Sci. Part A-1 1969, 7, 1789. https://doi.org/10.1002/pol.1969.150070719
  3. Kokufuta, E.; Zhang, Y. Q.; Tanaka, T.; Mamada, A.Macromolecules 1993, 26, 1053. https://doi.org/10.1021/ma00057a027
  4. Isogai, N.; Gong, J. P.; Osada, Y. Macromolecules 1996, 29, 6803. https://doi.org/10.1021/ma960335u
  5. Sjoberg, A.; Karlstrom, G.; Tjerneld, F. Macromolecules 1989, 22,4512. https://doi.org/10.1021/ma00202a023
  6. Kim, Y. H.; Kwon, I. C.; Bae, Y. H.; Kim, S. W. Macromolecules1995, 28, 939. https://doi.org/10.1021/ma00108a022
  7. Pandya, K.; Lad, K.; Bahadur, P. J. M. S. Pure Appl. Chem. A11993, 30, 1.
  8. Yang, J.; Guo, R.; Friberg, S. J. Disp. Sci. Technol. 1995, 16, 249. https://doi.org/10.1080/01932699508943677
  9. Crommen, J. H. L.; Schacht, E. H.; Mense, E. H. G. Biomaterials1992, 13, 601. https://doi.org/10.1016/0142-9612(92)90028-M
  10. Allcock, H. R.; Dudley, G. K. Macromolecules 1996, 29, 1313. https://doi.org/10.1021/ma951129+
  11. Tanigami, T.; Ono, T.; Suda, N.; Sakamaki, Y.; Yamaura, K.;Matsuzawa, S. Macromolecules 1989, 22, 1397. https://doi.org/10.1021/ma00193a065
  12. Goedemoed, J. H.; Mense, E. G. H.; Groot, D. D.; Claessen, A. M.E.; Scheper, R. J. J. Control. Rel. 1989, 170, 245.
  13. Crommen, J. H. L.; Schacht, E. H.; Mense, E. H. G. Biomaterials1992, 13, 511. https://doi.org/10.1016/0142-9612(92)90102-T
  14. Song, S.-C.; Lee, S. B.; Jin, J.-I.; Sohn, Y. S. Macromolecules1999, 32, 2188. https://doi.org/10.1021/ma981190p
  15. Lee, S. B.; Song, S.-C.; Jin, J.-I.; Sohn, Y. S. Macromolecules1999, 32, 7820. https://doi.org/10.1021/ma990645n
  16. Siegel, R. A.; Firestone, B. A. Macromolecules 1988, 21, 3254. https://doi.org/10.1021/ma00189a021
  17. Feil, H.; Bae, Y. H.; Feijen, J.; Kim, S. W. Macromolecules 1992,25, 5528. https://doi.org/10.1021/ma00046a063
  18. Kou, J. H.; Amidon, G. L.; Lee, P. I. Pharm. Res. 1988, 5, 592. https://doi.org/10.1023/A:1015998131160
  19. Dong, L.-C.; Hoffman, A. S. J. Control. Rel. 1991, 15, 141. https://doi.org/10.1016/0168-3659(91)90072-L
  20. Robinson, R. A.; Stokes, R. H. J. Phys. Chem. 1961, 65, 1954. https://doi.org/10.1021/j100828a010
  21. Herskovits, T. T.; Kelly, T. M. J. Phys. Chem. 1973, 77, 381. https://doi.org/10.1021/j100622a016
  22. Gustafsson, A.; Wennerstrom, H.; Tjerneld, F. Fluid PhaseEquilibria 1986, 29, 365. https://doi.org/10.1016/0378-3812(86)85036-1
  23. Aspinall, G. O. The Polysaccharides; Academic Press: New York,U.S.A., 1982; Vol. 1, Chapter 5.
  24. Birch, G. G.; Dziedzic, S. Z.; Shallenberger, R. S.; Lindley, M. G.J. Pharm. Sci. 1981, 70, 277. https://doi.org/10.1002/jps.2600700313
  25. Hudson, C. S.; Yanovsky, E. J. Am. Chem. Soc. 1917, 39, 1013. https://doi.org/10.1021/ja02250a019
  26. Kawasaki, H.; Sasaki, S.; Maeda, H.; Mihara, S.; Tokita, M.;Komai, T. J. Phys. Chem. 1996, 100, 16282. https://doi.org/10.1021/jp961219w

Cited by

  1. Reversible Association of Thermoresponsive Gold Nanoparticles: Polyelectrolyte Effect on the Lower Critical Solution Temperature of Poly(vinyl methyl ether) vol.110, pp.13, 2003, https://doi.org/10.1021/jp056675b
  2. The extended release properties of HPMC matrices in the presence of dietary sugars vol.138, pp.3, 2009, https://doi.org/10.1016/j.jconrel.2009.05.017
  3. Phase separation in aqueous solutions of polyethylaminophosphazene hydrochloride during heating vol.52, pp.11, 2003, https://doi.org/10.1134/s0965545x10110167
  4. Salt-Induced Thermoresponsivity of a Cationic Phosphazene Polymer in Aqueous Solutions vol.51, pp.20, 2018, https://doi.org/10.1021/acs.macromol.8b01621
  5. Mechanistic insights into the novel glucose-sensitive behavior of P(NIPAM-co-2-AAPBA) vol.63, pp.3, 2020, https://doi.org/10.1007/s11426-019-9680-6
  6. Nature of Saccharide-Induced F127 Micellar Dehydration: An Insight with FDAPT (2-Formyl-5-(4′-N,N-dimethylaminophenyl)thiophene), a Multiparametric Fluorescent Probe vol.37, pp.10, 2003, https://doi.org/10.1021/acs.langmuir.0c03284