DOI QR코드

DOI QR Code

Diffusion-Influenced Kinetics of Reactions Involving Polymers

  • Sung, Jae-Young (Department of Chemistry, Massachusetts Institute of Technology) ;
  • Park, Pyeong-Jun (Division of General Education, Chungju National University) ;
  • Lee, Jin-Uk (School of Chemistry and Molecular Engineering, and Center for Molecular Catalysis,Seoul National University) ;
  • Lee, Woo-Jin (School of Chemistry and Molecular Engineering, and Center for Molecular Catalysis,Seoul National University) ;
  • Kim, Ji-Hyun (School of Chemistry and Molecular Engineering, and Center for Molecular Catalysis,Seoul National University) ;
  • Lee, Sang-Youb (School of Chemistry and Molecular Engineering, and Center for Molecular Catalysis,Seoul National University)
  • Published : 2003.06.20

Abstract

We present a brief account of the theory of diffusion-influenced kinetics of reactions involving polymers. The review will be based on the recent contributions from the authors. Both intrapolymer and interpolymer reactions are considered, and the effects of various physical factors, such as the chain length, chain stiffness, and hydrodynamic interactions, are described within a unified theoretical framework.

Keywords

References

  1. Mita, I.; Horie, K. J. Macromol. Sci. 1987, C27, 91.
  2. O'Shaughnessy, B. In Theoretical and Mathematical Models inPolymer Research; Grosberg, A., Ed.; Academic; San Diego,1998; Chap. 5.
  3. Rice, S. A. Diffusion Limited Reactions, Comprehensive Chemical Kinetics, Vol. 25; Elsevier: Amsterdam, 1985.
  4. Kotomin, E.; Kuzovkov, V. Modern Aspects of Diffusion-Controlled Reactions; Elsevier: Amsterdam, 1996.
  5. Winnik, M. A. Acc. Chem. Res. 1985, 18, 73. https://doi.org/10.1021/ar00111a002
  6. Reis e Sousa, A. T.; Castanheira, E. M. S.; Fedorov, A.; Martinho,J. M. G. J. Phys. Chem. A 1998, 102, 6406. https://doi.org/10.1021/jp973258t
  7. Wilemski, G.; Fixman, M. J. Chem. Phys. 1974, 60, 866. https://doi.org/10.1063/1.1681162
  8. Wilemski, G.; Fixman, M. J. Chem. Phys. 1974, 60, 878. https://doi.org/10.1063/1.1681163
  9. Friedman, B.; O'Shaughnessy, B. Phys. Rev. A 1989, 40, 5950. https://doi.org/10.1103/PhysRevA.40.5950
  10. Friedman, B.; OShaughnessy, B. Europhys. Lett. 1993, 21,779. https://doi.org/10.1209/0295-5075/21/7/011
  11. Stampe, J.; Sokolov, I. M. J. Chem. Phys. 2001, 114, 5043. https://doi.org/10.1063/1.1348273
  12. Dua, A.; Cherayil, B. J. J. Chem. Phys. 2002, 116, 399. https://doi.org/10.1063/1.1423937
  13. Bandyopadhyay, T.; Ghosh, S. K. J. Chem. Phys. 2002, 116, 4366. https://doi.org/10.1063/1.1436475
  14. Rey, A.; Freire, J. J. Macromolecules 1991, 24, 4673. https://doi.org/10.1021/ma00016a030
  15. Podtelezhnikov, A.; Vologodskii, A. Macromolecules 1997, 30,6668. https://doi.org/10.1021/ma970506a
  16. de Gennes, P. G. J. Chem. Phys. 1982, 76, 3316. https://doi.org/10.1063/1.443328
  17. de Gennes, P. G. J. Chem. Phys. 1982, 76, 3322. https://doi.org/10.1063/1.443329
  18. Oshanin, G. S.; Nechaev, S.; Cazabat, A. M.; Moreau, M. Phys.Rev. E 1998, 58, 6134. https://doi.org/10.1103/PhysRevE.58.6134
  19. Oshanin, G. S.; Moreau, M.; Burlatsky, S. F. Adv. ColloidInterface Sci. 1994, 49, 1. https://doi.org/10.1016/0001-8686(94)80011-1
  20. O'Shaughnessy, B.; Sawhney, U. Phys. Rev. Lett. 1996, 76,3444. https://doi.org/10.1103/PhysRevLett.76.3444
  21. O'Shaughnessy, B.; Vavylonis, D. Phys. Rev. Lett. 2000,84, 3193. https://doi.org/10.1103/PhysRevLett.84.3193
  22. Fredrickson, G. H. Phys. Rev. Lett. 1996, 76, 3440. https://doi.org/10.1103/PhysRevLett.76.3440
  23. Sung, J.; Lee, S. J. Chem. Phys. 2001, 115, 9050.
  24. Sung, J.; Lee, J.; Lee, S. J. Chem. Phys. 2003, 118, 414. https://doi.org/10.1063/1.1525801
  25. Weiss, G. H. J. Chem. Phys. 1984, 80, 2880. https://doi.org/10.1063/1.447037
  26. Doi, M. Chem. Phys. 1975, 9, 455. https://doi.org/10.1016/0301-0104(75)80083-8
  27. Pastor, R. W.; Zwanzig, R.; Szabo, A. J. Chem. Phys. 1996, 105,3878. https://doi.org/10.1063/1.472208
  28. Rouse, P. E. J. Chem. Phys. 1953, 21, 1272. https://doi.org/10.1063/1.1699180
  29. Zimm, B. H. J. Chem. Phys. 1956, 24, 269. https://doi.org/10.1063/1.1742462
  30. Bixon, M.; Zwanzig, R. J. Chem. Phys. 1978, 68, 1896. https://doi.org/10.1063/1.435916
  31. Haas, E.; Wilchek, M.; Katchalski-Katzir, E.; Steinberg, I. Z. Proc. Nat. Acad. Sci. USA 1975, 72, 1807. https://doi.org/10.1073/pnas.72.5.1807
  32. Haas, E.; Katchalski-Katzir, E.; Steinberg, I. Z. Biopolymers 1978, 17, 11. https://doi.org/10.1002/bip.1978.360170103
  33. Haas, E.; Steinberg, I. Z. Biophys. J. 1984, 46, 429. https://doi.org/10.1016/S0006-3495(84)84040-0
  34. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum: New York, 1983.
  35. Gratton, E.; Limkeman, M. Biophys. J. 1983, 44, 315. https://doi.org/10.1016/S0006-3495(83)84305-7
  36. Lakowicz, J. R.; Gryczynski, I. In Topics in Fluorescence Spectroscopy, Vol. 1: Techniques; Lakowicz, J. R., Ed.; Plenum:New York, 1991.
  37. Lakowicz, J. R.; Kusba, J.; Wiczk, W.; Gryczynski, I.;Johnson, M. L. Chem. Phys. Lett. 1990, 173, 319. https://doi.org/10.1016/0009-2614(90)85277-J
  38. Lakowicz, J. R.; Kusba, J.; Gryczynski, I.; Wiczk, W.; Szmacinski, H.;Johnson, M. L. J. Phys. Chem. 1991, 95, 9654. https://doi.org/10.1021/j100177a012
  39. Park, P. J. ; Lee, S. J. Chem. Phys. 2001, 115, 9594. https://doi.org/10.1063/1.1413968
  40. Park, P. J. ; Lee, S. J. Chem. Phys. 2003, 118, 1514. https://doi.org/10.1063/1.1529191
  41. Sung, J.; Lee, S. J. Chem. Phys. 1999, 111, 796. https://doi.org/10.1063/1.479367
  42. Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics;Clarendon Press: Oxford, 1986.