DOI QR코드

DOI QR Code

Synthesis and Tautomerism of Novel Quinoxalines (Part II)

새로운 Quinoxaline류의 합성과 토토머화 현상 (제2보)

  • Ho Sik Kim (Department of Chemistry, Catholic University of Daegu) ;
  • Kyung Ok Choi (Department of Chemistry, Catholic University of Daegu) ;
  • Woo Sung Lim (Department of Chemistry, Catholic University of Daegu)
  • 김호식 (대구가톨릭대학교 자연대 화학과) ;
  • 최경옥 (대구가톨릭대학교 자연대 화학과) ;
  • 임우성 (대구가톨릭대학교 자연대 화학과)
  • Published : 2003.08.20

Abstract

The reaction of 6-chloro-3-methoxycarbonylmethylene-2-oxo-1,2,3,4-tetrahydroquinoxaline(5) or 3-methoxycarbonylmethylene-6-nitro-2-oxo-1,2,3,4-tetrahydroquinoxaline(6) with hydrazine hydrate gave 3-hydrazinocarbonylmethylene-2-oxo-1,2,3,4-tetrahydroquinoxalines(7, 8). The reaction of compound 7 or 8 with substituted benzaldehydes or heteroaromatic aldehydes afforded quinoxalines(9-14). Compounds showed the tautomerism between the enamine and methylene imine forms, and between the enamine, methylene imine and enaminol forms in dimethyl sulfoxide solution. The tautomer ratios were determined by the 1H NMR.

6-Chloro-3-methoxycarbonylmethylene-2-oxo-1,2,3,4-tetrahydroquinoxaline(5) 또는 3-methoxycarbonylmethylene- 6-nitro-2-oxo-1,2,3,4-tetrahydroquinoxaline(6)을 hydrazine hydrate와 반응시켜 3-hydrazinocarbonylmethylene-2-oxo-1,2,3,4-tetrahydroquinoxaline류(7, 8)를 합성하였다. 화합물 7 또는 8을 치환 벤즈알데히드류 및 헤테로고리 알데히드류와 반응시켜 quinoxaline류(9-14)를 각각 합성하였다. 합성한 화합물들은 dimethyl sulfoxide 용액에서 enamine형, methylene imine형 또는 enamine형, methylene imine형, enaminol형 사이에 토토머화 현상을 나타내었는데, 이들의 토토머 비를 1H NMR로서 측정하였다.

Keywords

References

  1. Cheeseman, G. W. H.; Cookson, R. F. The Chemistry of Heterocyclic Compounds. Condensed Pyrazines; Weiss-berger, A., Taylor, E. C., Eds.; John Wiley & Sons; New York, U.S.A., 1979; pp 1-290.
  2. Sato, N. Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, U.K., 1996, Vol. 6, pp 234-278.
  3. El Ashry, E. S. H.; Abdel-Rahman, A. A. H.; Rashed, N.; Rasheed, H. A. Pharmazie 1999, 54, 893. https://doi.org/10.1002/jhet.5570260621
  4. Monge, A.; Palop, J. A.; Urbasos, I.; Fernandez-Alvarez, E. J. Heterocyclic Chem. 1989, 26, 1623. https://doi.org/10.1002/jhet.5570260621
  5. Sakata, G.; Makino, K.; Kawamura, Y.; Ikai, T. J. Pesticide Sci. 1985, 10, 61. https://doi.org/10.1584/jpestics.10.61
  6. Miyagi, T.; Yamamoto, H. Japan Patent 1967, 17747
  7. Miyagi, T.; Yamamoto, H. Chem. Abstr. 1968, 69, 10475x.
  8. Rigas, J. R.; Tong, W. P.; Kris, M. G.; Orazem, J. P.; Young, C. W.;Warrell, R. P. Cancer Res. 1992, 52, 6619. https://doi.org/10.3987/R-1986-08-2321
  9. Kim, H. S.; Choi, K. O.; Kurasawa, Y. J. Korean Chem. Soc. 2000, 44, 435. https://doi.org/10.1002/jhet.5570300456
  10. Iwanami, Y. J. Chem. Soc. Japan, Pure Chem. Soc. 1962, 83, 590. https://doi.org/10.3987/REV-95-472
  11. Kurasawa, Y.; Takada, A. Heterocycles 1985, 23, 2083. https://doi.org/10.3987/R-1985-08-2083
  12. Kurasawa, Y.; Takada, A. Heterocycles 1986, 24, 2321. https://doi.org/10.3987/R-1986-08-2321
  13. Kurasawa, Y.; Takada, A.; Kim, H. S. Heterocycles 1995, 41, 2057. https://doi.org/10.3987/REV-95-472
  14. Kurasawa. Y.; Yoshishiba, N.; Kureyama, T.; Takada, A.; Kim, H. S.; Okamoto, Y. J. Heterocyclic Chem. 1993, 30, 1149. https://doi.org/10.1002/jhet.5570300456

Cited by

  1. Higher moisture content is associated with greater emissions of DEHP from PVC wallpaper vol.152, 2017, https://doi.org/10.1016/j.envres.2016.09.027
  2. A Novel Strategy for the Construction of Functionalized 1,5- Benzodiazepinesviaa Tandem Conjugated Addition/Cyclization Process vol.352, pp.2-3, 2010, https://doi.org/10.1002/adsc.200900736
  3. Diffusion of di(2-ethylhexyl)phthalate in PVC quantified by ATR-IR spectroscopy vol.76, 2015, https://doi.org/10.1016/j.polymer.2015.08.048
  4. A convenient separation method for di(2-ethylhexyl)phthalate by novel superparamagnetic molecularly imprinted polymers vol.8, pp.63, 2018, https://doi.org/10.1039/C8RA07316C
  5. Stabilization of epoxidized soybean oil-plasticized poly(vinyl chloride) blends via thermal curing with genistein vol.135, pp.31, 2018, https://doi.org/10.1002/app.46472
  6. Kinetics of interaction of palm ethyl biodiesel with three different polymer materials vol.21, pp.12, 2008, https://doi.org/10.1002/poc.1427
  7. Metallocene based polyolefin: a potential candidate for the replacement of flexible poly (vinyl chloride) in the medical field vol.21, pp.9, 2009, https://doi.org/10.1002/pat.1475
  8. Leaching of plasticized PVC: Effect of irradiation vol.112, pp.3, 2009, https://doi.org/10.1002/app.29612
  9. Effects of inorganic nano-particles on plasticizers migration of flexible PVC vol.115, pp.4, 2010, https://doi.org/10.1002/app.31310
  10. Pyrido[2,3-b]pyrazine 유도체의 합성 (제1보) vol.49, pp.6, 2005, https://doi.org/10.5012/jkcs.2005.49.6.617
  11. Reduced Migration from Flexible Poly(vinyl chloride) of a Plasticizer Containing β-Cyclodextrin Derivative vol.42, pp.19, 2003, https://doi.org/10.1021/es800895x
  12. Influence of Temperatureon the Emission of Di-(2-ethylhexyl)phthalate (DEHP) fromPVC Flooring in the EmissionCell FLEC vol.46, pp.2, 2012, https://doi.org/10.1021/es2035625
  13. Approaches to Modelling the Kinetics of Extraction of Plasticisers from Polyvinyl Chloride vol.41, pp.11, 2003, https://doi.org/10.1177/0307174x1404101111
  14. Reducing the Rate of Plasticizer Leaching from Poly(vinyl chloride) Matrix vol.10, pp.1, 2003, https://doi.org/10.1134/s2075113319010076
  15. Evaluating Phthalate Contaminant Migration Using Thermal Desorption–Gas Chromatography–Mass Spectrometry (TD–GC–MS) vol.11, pp.4, 2003, https://doi.org/10.3390/polym11040683
  16. Physics of suction cups vol.15, pp.46, 2019, https://doi.org/10.1039/c9sm01679a
  17. Biopolyurethane/Diethylhexyl Phthalate Hybrid Plasticizer for Flexible Polyvinyl Chloride vol.21, pp.6, 2020, https://doi.org/10.1007/s12221-020-9665-6
  18. Copolymer Structure and Performance Consequences of High‐Impact Ethylene-Propylene Copolymers Based on a Ziegler-Natta Catalyst with Novel Internal Donor vol.14, pp.6, 2003, https://doi.org/10.1002/mren.202000022
  19. Association between Urinary Metabolites and the Exposure of Intensive Care Newborns to Plasticizers of Medical Devices Used for Their Care Management vol.11, pp.4, 2003, https://doi.org/10.3390/metabo11040252
  20. Reply to Otter et al. Comment on “Bernard et al. Association between Urinary Metabolites and the Exposure of Intensive Care Newborns to Plasticizers of Medical Devices Used for Their Care Manage vol.11, pp.9, 2003, https://doi.org/10.3390/metabo11090598