References
- Schmid, G., E. Clusters and Clusters: from Theory to Applications;VCH: Weinheim, 1994.
- Henglein, A. J. Phys. Chem. 1993, 97, 5457. https://doi.org/10.1021/j100123a004
- Petroski, J. M.; Wang, Z. L.; Green, T. C.; El-Sayed, M. A. J.Phys. Chem. B 1998, 102, 3316. https://doi.org/10.1021/jp981030f
- Hulteen, J. C.; Martic, C. R. J. Mater. Chem. 1997, 7, 1075. https://doi.org/10.1039/a700027h
- Yu, Y.; Chang, S.; Lee, C.; Wang, C. R. C. J. Phys. Chem. B 1997,101, 6661. https://doi.org/10.1021/jp971656q
- Van der Zande, B. M. I.; Bolmer, M. R.; Fokkink, L. G. J.; Schonenbrger, C. J. Phys. Chem. B 1997, 101, 852. https://doi.org/10.1021/jp963348i
- Lisiecki, I.; Billoudet, F.; Pileni, M. P. J. Phys. Chem. B 1996, 100,4160. https://doi.org/10.1021/jp9523837
- Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-sayed,M. A. Science 1996, 272, 1924. https://doi.org/10.1126/science.272.5270.1924
- Devenish, R. W.; Goulding, T.; Heatron, B. T.; Whyman, R. J.Chem. Soc., Dalton Trans. 1996, N5, 673.
- Littau, K. A.; Szajwski, P. J.; Kortan, A. R.; Brus, L. E. J. Phys.Chem. 1993, 97, 1224. https://doi.org/10.1021/j100108a019
- Wei, G. T.; Liu, F. K. Anal. Chem. 1999, 71, 2085. https://doi.org/10.1021/ac990044u
- Schanabel, U.; Fischer, C. H.; Kenndler, E. J. MicrocolumnSeparations 1997, 9(7), 529. https://doi.org/10.1002/(SICI)1520-667X(1997)9:7<529::AID-MCS2>3.0.CO;2-3
- Jones, H. K.; Ballou, N. E. Anal. Chem. 1990, 62, 2484. https://doi.org/10.1021/ac00221a014
- Quang, C.; Petersen, S. L.; Ducatte, G. R.; Ballou, N. E. J.Chromatogr. A 1996, 732, 377. https://doi.org/10.1016/0021-9673(95)01260-5
- McCormick, R. M. J. Liquid Chromatogr. 1991, 14, 939. https://doi.org/10.1080/01483919108049296
- Peterson, S. L.; Ballou, N. E. Anal. Chem. 1992, 64, 1676. https://doi.org/10.1021/ac00039a009
- VanOrman, B. B.; McIntire, G. L. J. Microcol. Sep. 1994, 6, 591. https://doi.org/10.1002/mcs.1220060610
- Radko, S. P.; Garner, M. M.; Caiafa, G.; Charambach, A. Anal.Biochem. 1994, 223, 82. https://doi.org/10.1006/abio.1994.1550
Cited by
- Use of nanomaterials in capillary and microchip electrophoresis vol.4, pp.2, 2007, https://doi.org/10.1586/14789450.4.2.287
- Electrophoretic Concentration of Nanoparticles of Gold in Reversed Micellar Solutions of AOT vol.112, pp.42, 2008, https://doi.org/10.1021/jp805268w
- Fractionation and characterization of nano- and microparticles in liquid media vol.400, pp.6, 2011, https://doi.org/10.1007/s00216-011-4704-1
- Influence of polymeric coating on capillary electrophoresis of iron oxide nanoparticles vol.11, pp.1, 2014, https://doi.org/10.1007/s13738-013-0298-1
- Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact vol.6, pp.1, 2014, https://doi.org/10.1039/C3AY40517F
- Polydispersity and assembling phenomena of native and reactive dye-labelled nanocellulose vol.22, pp.6, 2015, https://doi.org/10.1007/s10570-015-0755-3
- Engineered Nanoparticles Associated Metabolomics vol.20, pp.1, 2016, https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000283
- Separation and detection of gold nanoparticles with capillary electrophoresis and ICP-MS in single particle mode (CE-SP-ICP-MS) vol.32, pp.8, 2017, https://doi.org/10.1039/C7JA00040E
- Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials vol.38, pp.19, 2017, https://doi.org/10.1002/elps.201700097
- Improved separation and size characterization of gold nanoparticles through a novel capillary zone electrophoresis method using poly(sodium4-styrenesulfonate) as stabiliser and a stepwise field strength gradient vol.38, pp.6, 2017, https://doi.org/10.1002/elps.201600478
- Detection of gold nanoparticles using an immunoglobulin-coated piezoelectric sensor vol.19, pp.49, 2008, https://doi.org/10.1088/0957-4484/19/49/495502
- Current Application of Capillary Electrophoresis in Nanomaterial Characterisation and Its Potential to Characterise the Protein and Small Molecule Corona vol.8, pp.2, 2018, https://doi.org/10.3390/nano8020099
- CE characterization of semiconductor nanocrystals encapsulated with amorphous silicium dioxide vol.29, pp.3, 2008, https://doi.org/10.1002/elps.200700411
- Application of capillary zone electrophoresis for separation of water-soluble gold monolayer-protected clusters vol.29, pp.11, 2008, https://doi.org/10.1002/elps.200700562
- Free flow electrophoresis for the separation of CdTe nanoparticles vol.19, pp.10, 2009, https://doi.org/10.1039/b820703h
- Inertial microfluidics for continuous particle filtration and extraction vol.7, pp.2, 2009, https://doi.org/10.1007/s10404-008-0377-2
- Electrophoretic methods for separation of nanoparticles vol.32, pp.11, 2009, https://doi.org/10.1002/jssc.200900071
- Determination of Na and Al Ions in Semiconductor Cleaning Solution Using Capillary Electrophoresis vol.24, pp.12, 2003, https://doi.org/10.5012/bkcs.2003.24.12.1838
- Synthesis and Anion Binding Properties of 2,5-Diamidothiophene Polypyrrole Schiff Base Macrocycles vol.7, pp.23, 2003, https://doi.org/10.1021/ol052162b
- Capillary Electrophoresis with Nanoparticle Matrix for DNA Analysis vol.27, pp.1, 2003, https://doi.org/10.5012/bkcs.2006.27.1.133
- Size and shape separation of gold nanoparticles with preparative gel electrophoresis vol.1167, pp.1, 2003, https://doi.org/10.1016/j.chroma.2007.07.056
- Enhanced particle filtration in straight microchannels using shear-modulated inertial migration (4 pages) vol.20, pp.10, 2008, https://doi.org/10.1063/1.2998844
- Electrophoretic Mobility of Colloidal Gold Particles in Electrolyte Solutions vol.25, pp.8, 2003, https://doi.org/10.1021/la803671t
- On the challenge of quantifying man-made nanoparticles in the aquatic environment vol.12, pp.1, 2003, https://doi.org/10.1039/b913681a
- Conductivity and electrophoretic mobility of dilute ionic solutions vol.352, pp.1, 2003, https://doi.org/10.1016/j.jcis.2010.08.009
- Ultra-broadband Optical Gain Engineering in Solution-processed QD-SOA Based on Superimposed Quantum Structure vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-49369-6