DOI QR코드

DOI QR Code

압력변화에 따른 퀴놀린 유도체와 p-치환 염화벤조일류의 속도론적 연구

Kinetics on the Reaction of Substituted Quinolines and p-Substituted Benzoylchlorides under Various Pressures

  • 임종완 (한양대학교 자연과학대학 화학과) ;
  • 김세경 (한양대학교 자연과학대학 화학과)
  • Jong-Wan Lim (Department of Chemistry, Hanyang University) ;
  • Se-Kyong Kim (Department of Chemistry, Hanyang University)
  • 발행 : 2003.06.20

초록

온도(10, 15, 20, $25^{\circ}C$)와 압력(1, 200, 500, 1000 bar) 변화에 따라 p-치환염화벤조일류$(p-CH_3,\;p-H,\;p-NO_2)$와 퀴놀린 유도체(quinoline, 6-chloroquinoline)의 반응을 아세토니트릴 용매내에서 전기전도도법에 의하여 속도상수$(k_2)$를 구하였다. 이로부터 여러 활성화파라미터-활성화에너지$(Ea,\;{\Delta}V^{\neq},\;{\Delta}H^{\neq},\;{\Delta}S^{\neq}, \;{\Delta}G^{\neq})$를 구하였으며, 또한 Hammett반응상수 ${\rho}_X$와 기질의 치환기 효과에따른 ${\rho}_Y$를 구하였다. 속도상수는 온도와 압력 증가에 따라 증가하였으며, 친핵체인 quinoline과 기질에 전자 받게 치환기$(p-NO_2)$가 치환된 경우 더욱 증가 하였다. 이때 활성화부($({\Delta}V^{\neq})$, 활성화엔트로피$({\Delta}S^{\neq})$는 모두 음의 값으로 나타났으며, 모든 압력 조건에 따라서 친핵체의 치환기 효과 ${\rho}_X$는 음의 값을 ${\rho}_Y$는 양의 값을 나타내었다. 이러한 속도론적인 연구 결과 전반적인 반응은 $S_N2$ 반응메카니즘을 따르며, 압력이 증가함에 따라 결합형성이 진전되어지는 반응 메카니즘으로 진행됨을 알 수 있었다.

The reaction rates of substituted quinolines (6-Clqui., qui.) with p-substituted benzoylchlorides $(p-CH_3,\;p-H,\;p-NO_2)$ have been measured by conductometry in acetonitrile, and the rate constants are determined at various temperatures (10, 15, 20, $25^{\circ}C$) and pressures (1, 200, 500, 1000 bar). From the values of rate constants, the activation parameters $(Ea,\;{\Delta}V^{\neq},\;{\Delta}H^{\neq},\;{\Delta}S^{\neq}, \;{\Delta}G^{\neq})$and the pressure dependence of Hammett ρ values were determined. The rate constants increased with increasing temperatures and pressures, and are further increased to introduction to the electron acceptor substituents in substrate $(p-NO_2)$ with quinoline. The activation volume and the activation entropy are all negative. And the Hammett p values are negative for nucleophile ${\rho}_X$ and positive for the substrate ${\rho}_Y$ over the pressure range studied. The results of kinetic studies for pressure and substituent show that these reactions proceed through a typical $S_N2$ reaction mechanism and "associative $S_N2$" favoring bond formation with increasing pressures.

키워드

참고문헌

  1. Arnett, E.M.; Reich, J. Am. Chem. Soc. 1980, 102, 5892. https://doi.org/10.1021/ja00538a031
  2. Glasstone, S.; Laidler, K.J.; Eyring, H. “The theory ofRate Processes,” McGraw-Hill, N.Y., 1941, p. 418.
  3. Hyne, J. B. J. Am. Chem. Soc. 1966, 88, 2104. https://doi.org/10.1021/ja00962a004
  4. Kondo, Y.; Tojima, H.; Tokura N. Bull. Chem. Soc.Japan 1972, 45, 3579. https://doi.org/10.1246/bcsj.45.3579
  5. Evans, M. G.; Polanyi M. Trans. Faraday Soc. 1935,31, 875. https://doi.org/10.1039/tf9353100875
  6. Dickson, S.J.; Hyne, J. B. Can. J. Chem., 1971, 49,2394. https://doi.org/10.1139/v71-391
  7. Guggenheim, E. A. Phil. Mag. 1926, 2, 538. https://doi.org/10.1080/14786442608564083
  8. Menschutkin, N. Z. Phys. Chem. 1890, 5, 589.
  9. Moelyn-Hughes, Kinetics in Solutions, 1947; p338.
  10. Whalley, E. Advances in Physical Organic Chemistry,2nd Ed.; Academic Press:N.Y. 1964; p. 93.
  11. A. Sera, A.; Miyazawa, T.; Matsuda, Y.; Togawa, Y.;Maruyama,K. Bull. Chem. Soc. Japan, 1973, 46, 3490. https://doi.org/10.1246/bcsj.46.3490
  12. Lenoble, W. J.; Yates, B.L.; Scaplehorn, A. W. J. Am.Chem. Soc. 1967, 89, 3751. https://doi.org/10.1021/ja00991a012
  13. Asano, T.; LeNoble, W. J. Chem. Rev. 1978, 407.
  14. Leffler, J. E.; Grunwald, E. Rate and Equilibria of Org.Reaction, John Wiley and Sons: N.Y. 1963; p327
  15. Harned, H. S.; Owen, B. B. Physical Chemistry ofElectrolyticSolution, 3rd Ed, Reinhold: New York,1958; p369.
  16. Weale, K. Chemical Reactions at High Pressures 1967,Spon, London.
  17. Eckert, C. Rep. Prog. Phys. Chem. 1972, 23, 239.
  18. Jenner, G. Angew. Chem. Int. Ed. 1975, 14, 137. https://doi.org/10.1002/anie.197501371
  19. Rogne, O. J. Chem. Soc(B). 1969, 1294.
  20. Lee, I.; Kim, N.I.; Sohn, S.C. Tetrahedron Lett. 1983,23, 4723.

피인용 문헌

  1. 친핵성치환반응에서 압력과 온도변화에 따른 친핵체 효과 vol.48, pp.5, 2004, https://doi.org/10.5012/jkcs.2004.48.5.461