Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, $\left[\mathrm{Co}(\text { phen })_{2}(\mathrm{Cl})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }}$

Pu Su Zhao ${ }^{\dagger}$, Lu De Lu*, and Fang Fang Jian*
"A haterials Chemistry Lahoratory Naning timersity of Science and Techoology
Nen: Materiak \& Amation Coordination Chemisty Lathonotor? Oingdao thwersity of Science and Technology (2mbs.4.6 점수)

Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, $\left[\mathrm{Co}(\text { phen })_{2}(\mathrm{Cl})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }}$

Pu Su Zhao ${ }^{\dagger}$, Lu De Lu ${ }^{*}$, and Fang Fang Jian*
 Oingdoo. 266042, I R R Chima
(Received April 6,2003)

요 약. $\left[\mathrm{Co}(\mathrm{phen}),(\mathrm{Cl})\left(I I_{2}(\mathrm{O})\right] \mathrm{Cl} \cdot 2 \mathrm{II},(\right.$ (phen-1, It)-phenanthroline)의 결정구노는 X-ray에 의하여 결정되었나. 그
 는: triclinic볘와 space group이 Pl 의 구졸른 견싱화 되었다. 내위된 양이온은 두개의 Phen 리간드. 하나의 chloride이 온퐈 하나의 $\mathrm{H}_{2} \mathrm{O}$ 리간드카 cis 배옂룬 킬레이크된 애웟 쿤발ㅌㅡㅡ 원사가 포학된다. 쿤발트에 배위된 chlorid에 디해서. 켠정구조를 이루군: 해나의 chloridc이온과 네개의 푼분사가 있다. 고체상태에서. 제녹의 화한문은 수소결한을 통하여 3 차원 그물다초를 갖는나.

주제어: 코날ㄴㅡㅡ 착화합본. 1.10-Phenanthrolinc. 수소견합. II곰구조

Abstract

The ersstal structure of $\left[\mathrm{Co}(\mathrm{phen})_{2}(\mathrm{Cl})\left(\mathrm{II}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot 2 \mathrm{I}_{2} \mathrm{O}$ (phen-I.I()-phemanthroline) has been determined by X-ray erystallography: It ervitallizes in the trielinic system. space group P_{1}, with lattice parameters a-9.662(2), $h-11.45(1), c-1.3 .037(2) \hat{A}, \alpha-64.02(1), \beta-86.364(9), \gamma-78.58(2)^{\prime \prime}$, and $Z-2$. The coordinaled cations contain a six-coordinaled cobalt atom chelated by two phen ligands and one chloride anion and one water ligand in cis arrangement. In addition to the chloride coordinated to the cobalt, there are one chlonde ion and four water molecules which complete the enstal sitructure. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds. within which exists the strongest hadrogen bond $(\mathrm{O}(3)-\mathrm{O}(4)-2.33 \AA)$. The intermolecular livedrogen bonds conneet the $\left[\mathrm{Co}(\mathrm{phen})_{2}(\mathrm{Cl})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{1}$. $\mathrm{H}_{2} \mathrm{O}$ moictics and chloride ion.

Keywords: Cobali Complexes, I, It-Phemanthroline Ligands. I Iydrogen Bonds, Network

INTRODUCTION

Metal complexes of the type $\left\lceil\mathrm{M}(\mathrm{T}, \mathrm{I})_{3}\right]^{\mathrm{n}+}$, where I. I , is either 1,10 -phenanthroline (phen) or a modiliod phen ligand, are particularly attractive spocies
for developing new diagnostic and therapeutic agents that can recognize and cleave DNA. ${ }^{1-2}$ The ligands or the metal in these complexes can be varied in an casily controlled manner to bacilitate an individual application, thes providing an casy access
for the understanding of details involved in DNAbonding and ckeavage. ${ }^{3}$.sme $\left[\mathrm{Co}(\mathrm{phen})_{\mathrm{X}} \mathrm{XY}\right]^{1 r}$ compleses have the DNA-binding and photochemical DNA cleavage characteristics. ${ }^{1}$ Coball compleses with phen, halogen ions and $\mathrm{H}_{2} \mathrm{O}$ ligands have also been studied in comection with the meehanism of ineversible autoxidation reactions. ${ }^{5 / 8}$ subsequent cis-trans isomerization ${ }^{\text {vil }}$ and equilibrium in solution at different pll values. ${ }^{12-13}$ To our knowledge, there are a little crystal structure of $\mathrm{Co}(\mathrm{II})$ with phen ligands forming coordinating complexes which have been reported so far because of Co(II) instability: In this paper. We describe the crystal structure of chloro bis((1.10-phenanthroline) cohall(II) comples, $\left[\mathrm{Co}(\mathrm{Phen})_{2}(\mathrm{Cl})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

EXPERAMENT SECTION

Preparation of $\left[\mathrm{Co}(\mathrm{ph}=)_{2}(\mathrm{Cl})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathbf{C l} \cdot 2 \mathbf{H}_{2} \mathbf{O}$.
The reagents $\mathrm{CoCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}$ ($\Lambda . \mathrm{R}$.), and phen ($\left.\Lambda . \mathrm{R}.\right)$ were commercially available. To a warm solution of phen (2.97 g .15 mmol) in EtOII (50 mL) was added with string $\left[\mathrm{CoCl}_{2} \cdot 6 \mathrm{I}_{2} \mathrm{O}\right](1.19 \mathrm{~g}, 5 \mathrm{mmol})$ and the misture were reflused for 20 mins. The red solution was filtered and the filtrate was left to stand undisturbed. Upon slow evaporation at room temperature, a tod erystalline solid appeared several weeks later and was separated by tiltration. The C, H and N contents were detemined by clemental analysis. FFound: C, $51.83, \mathrm{H}, 4,70, \mathrm{~N}, 22.00 \%$. Calced. C, $51.84, \mathrm{H}, 462, \mathrm{~N}, 22.67 \% 7$.
X-ray structure determination. The selected cystal of $\left[\mathrm{Co}(\mathrm{phen})_{2}(\mathrm{Cl})\left(\mathrm{l}_{2} \mathrm{O}\right)\right]\left(\mathrm{Cl} \cdot 2 \mathrm{I}_{2} \mathrm{O}\right.$ was mounted on an Siemens $1^{1} 4$ diffractometer Reflection data were measured at 293 K , using graphite mono-chromated $\mathrm{M}_{\omega}-\mathrm{K}_{u}(\lambda=0.71073 \lambda)$ radiation $\omega-2 \theta$ scan mode. Intensities were corrected for Lorentz and polarization effects and cmpirical absorption, and the data reduction using SHTII,XTI,5 ${ }^{\text {It }}$ The strueture were solved by direet methods using SHEIS.XS86. ${ }^{15}$ All the nonhydrogen atoms were relined on F^{2} anistropically by full-matrix least squares method. ${ }^{\text {ls }}$ All the hydrogen atoms were placed in calculated positions assigned fixed isotropic thermal parameters at 1.2 times the equiva-

Toble 1. Summary of Cisstallographic Results for [Cofphen $)_{i}$ $\left.(\mathrm{Cl})\left(\mathrm{H}_{i} \mathrm{O}\right)\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{i} \mathrm{O}$

Color shape	Red pristm
Fmprical formula	$\mathrm{C}_{i j} \mathrm{II}_{i 2} \mathrm{Cl}_{2} \mathrm{CoNN}_{1} \mathrm{O}_{3}$
Formula weight	54.4.29
Crisstal size (nm)	0.800 .600 .60
Space group	$1{ }^{3}$
Unit cell dimensions	
a. A	$9.662(2)$
b. A	11.445(1)
c. \AA	13.037(2)
α.	64.02(1)
β.	$86.36419)$
γ	78.58(2)
Cell volume. ${ }^{3}$	1269.9(4)
7.	2
f (calcd.) Mg m ${ }^{3}$	1.423
Abs coelli. mm^{-1}	0.918
$F(000)$	558
Radiation	MoKa ($\lambda-0.071073$ A)
Temp. K	293(2)
θ range.	2.01 to 25.00
J imitting indices	$-1 \leq h \leq 11 .-12 \leq h \leq 12 .-15 \leq 1 \leq 15$
Reflections collected	5207
Independent retlections	$4349\left[R_{\text {inin11 }}-0.0747\right]$
Tonax and Tmin.	0.4431 .0 .3972
$R[1 \cdot 2 \sigma(I)]$	R1-0.077, wR2-0.1947
R (all data)	R1-0.08.33. wR2-0.1968
Goodness-of-tit on \vdash^{2}	1.298
J argest diff. peak and hole	1.659 and $-1.192 \mathrm{c} \wedge^{\text {i }}$

lent isotropie f^{\prime} of the atoms to which they are attached and allowed to ride on their respective parent atoms. The contributions of these hydrogen atoms were included in structure-factor calculations. The final least-square cycle qave $R=$ $0.0747, R_{\mathrm{w}}=0.0919$ for 3639 reflections with $>2 \sigma$ (I): the weighting scheme, $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1247\right.$ $\left.P)^{2}+0.0000 P\right]$, where $\left.P=\left(F_{o}^{2}\right)+2 F_{c}^{2}\right) / 3$. Atomic scattering lacters and anomalous dispersion conections were taken from Inemational Table for A Ray Cystallography:" A summary of the key crystallographic intomation is given in Table 1. The final position parameters of nonhydrogen atoms are given in Table 2. Selected bond lengths (A) possible hydrogen bonds (Λ) and bond angles (${ }^{\circ}$) are presented in Table 3. respectively.

Tabte 2. Atomic coordinates (10^{4}) and equivalent isotmpic displacement parameters ($\Lambda^{2} \cdot 10^{3}$) $U_{\text {requ }}$ is defined as one thied of the trace of the orthogonalized l_{ij} tensor

	x	\because	7	$t_{\text {icql }}$
Cos (1)	2011(1)	-1.3260 1)	7779(1)	30 (1)
$\mathrm{Cl}(1)$	747(1)	+52(1)	6149(1)	+2(1)
O(1w)	414(4)	-9900(3)	8850 (3)	$41(1)$
N(1)	2900(4)	-3066(4)	9317(3)	34(1)
N(2)	1177(4)	-2859(3)	7669(3)	$34(1)$
N(3)	3848(4)	-1595(3)	(6829(3)	$32(1)$
N(4)	$3.308(4)$	-140(4)	8008(3)	37(1)
C(1)	3726(6)	-.3160(5)	10108(4)	$46(1)$
C(2)	+151(7)	-4.328(6)	11097(5)	$62(2)$
C(3)	$3637(7)$	-5428(6)	1126+(5)	60(2)
C(4)	2740(6)	-5372(5)	104.37(4)	$46(1)$
C(5)	$2400(5)$	-4169(4)	9469(4)	$35(1)$
C(6)	1491(5)	-4060(4)	8588(4)	34(1)
C(7)	$967(6)$	-5172(5)	8704(5)	46 (1)
C(8)	117(6)	-5012(6)	7825 (6)	58(2)
(9)	-189(7)	-3805(6)	$6876(5)$	$60(2)$
C(10)	367(6)	-2749(5)	$6842(4)$	4519
C(11)	2169 (7)	-6479(5)	10514(5)	$62(2)$
C(12)	1342(7)	-6378(5)	$9700(6)$	594)
C(13)	4082(5)	-2275(5)	6223(4)	41(1)
C(14)	5323 (6)	-2356(5)	$5619(4)$	$47(1)$
C(15)	6351(5)	-1694(5)	$5646(4)$	+4(1)
C(16)	6136(5)	-965(4)	6285(4)	$38(1)$
C(17)	4860(5)	-944(4)	6862(4)	33 (1)
C(18)	$457.3(5)$	-176(4)	7502(4)	$35(1)$
C(19)	$5604(5)$	498(5)	7582(4)	4.3 (1)
C (20)	5256(7)	1256(6)	8208(5)	(6)(2)
$\mathrm{C}(21)$	3982(7)	1302(7)	$8705(6)$	$69(2)$
$\mathrm{C}(22)$	$3032(6)$	578(5)	8599(5)	$52(1)$
$\mathrm{C}(23)$	$7148(5)$	-261(5)	$6373(4)$	$48(1)$
C(24)	6905(6)	424(6)	7007(5)	$51(1)$
$\mathrm{Cl}(2)$	1161(2)	-1804(1)	11.371(1)	$52(1)$
O(2W)	-80(21)	-6895(7)	6225 (7)	20+(10)
O(3W)	2187(19)	-5560(18)	$5.335(1.3)$	192(8)
O(5W)	.8892(21)	-5290(12)	(670(1.3)	167(7)
O(TW)	$6693(33)$	-5888(19)	6198(22)	328(17)

RESULT AND DISCUSSION

Structure. The X-ray structure of the complex $\left.\left[\mathrm{Co}(\mathrm{ph})^{2}\right)_{2}(\mathrm{Cl})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ consists of the $[\mathrm{Co}$ (phen) $\left.)_{2}(\mathrm{Cl})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ molecules and one Cl^{-}ion and four molecules of water Fig. I shows a perspective view of the title compound with atomic numbering scheme, and Fig. 2 a perspective view of the crys-
tal packing in the unit cell.
The title compound contains a six-coordinated cobalt atom chelated by two phen ligands and one Cl^{-}anion and one $\mathrm{H}_{2} \mathrm{O}$ molecules in a cis anangement with the angles $O(1 w)-\operatorname{Co}(1)-N(2)=93.95(1.3)^{\circ}$ and $\mathrm{O}(1 \mathrm{w})-\mathrm{Co}(1)-\mathrm{N}(3)=171.29(13)^{\circ}, \mathrm{Cl}(1)-\mathrm{Co}(1)-$ $\mathrm{N}(2)=96.29(10)^{\circ}$ and $\mathrm{Cl}(1)-\mathrm{Co}(1)-\mathrm{N}(1)=172.05(12)^{\circ}$: $\mathrm{O}(1 \mathrm{w})-\mathrm{Co}(1)-\mathrm{Cl}(1)=171.20(13)^{\circ}$. The angles of the title compound in the coordination sphere differ

Tible 3. Selected bond lengths (A) and bond angles (") of the tille compound

Coll)-(1W)	$2.107(3)$	$\mathrm{Cof(1)-N(2)}$	2.132i4)
$\mathrm{Co}(1) \mathrm{N}(4)$	$2.139(4)$	$\mathrm{Con}(1) \mathrm{N}(3)$	2.149(4)
Coll)-N(1)	2.183(4)	$\mathrm{Con}(1)-\mathrm{Cl}(1)$	2.389 (1)
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.2976{ }^{\text {1 }}$	$\mathrm{N}(1)-\mathrm{C}(5)$	$1.370(6)$
$\mathrm{N}(2)-\mathrm{C}(10)$	$1.32046)$	$\mathrm{N}(2)-\mathrm{C}(6)$	$1.361(5)$
O(2w) 0 (3w)	3.07(1)	O(2w)-O(+w)	3.10(3)
O(3w)-O(4w)	2.33 .3)	O(w)-O(5w)	3.17(3)
$\mathrm{Cl}(1) \mathrm{O}(2 \mathrm{w})$	3.027(9)	$\mathrm{Cl}(2)-\mathrm{O}(\mathrm{m})$	3.15+(4)
$\mathrm{Cl}(2) \mathrm{O}(2 \mathrm{w})$	3.04(1)		
O(1W)-Co(1)-N(2)	94.00,1)	O(IW)-Co(1)-N(4)	94.5(1)
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(4)$	166.1(2)	O(1W)-Co(1)-N(3)	171.3(1)
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(3)$	93.3(1)	$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(3)$	$77.5(1)$
O(1W)-Col 1 -N(1)	85.2(1)	$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(1)$	$77.5(1)$
$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(1)$	92.3(2)	$\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{N}(1)$	91.6 (1)
O(1W)-Cotl)-Cll	90.3 (1)	$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	96.3 (1)
$\mathrm{N}(4)-\mathrm{Cof} 1)-\mathrm{Cl}(1)$	94.7(1)	$\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	$93.7(1)$
$\underline{\mathrm{N}(1)-\mathrm{Cof}} 1$ - $\mathrm{Cl}(1)$	172.1(1)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Co}(1)$	129.4(3)

Fig. 1. Mollectlat structure for $\left[\mathrm{Co}(\mathrm{phen})_{2}(\mathrm{Cl})\left(\mathrm{II}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with the atomic numbering seheme.

Fig. 2. A view of the enstal packing down the a axis for $\left[\mathrm{Co}(\mathrm{p} \text { hen) })_{2}(\mathrm{Cl})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl} \cdot 2 \mathrm{I}_{2} \mathrm{O}$.

From the ideal 90°. This distortion can be rationalized after considering the restriction imposed by the ligands. The bite angles between the phen chelate rings and cobalt atom are the same $\left(77.5(1)^{\circ}\right)$ which is lower than that of $\left.[\mathrm{Co} \text { (phen) })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}^{18}$ $\left[\mathrm{Co}(\mathrm{mhen})_{2}(\mathrm{Cl})\left(\mathrm{I}_{2} \mathrm{O}\right)\right]^{2-1}$ and $[\mathrm{Cophen})_{2} \mathrm{Cl}_{2} \mathrm{Cl} \cdot 3 \mathrm{I}_{2} \mathrm{O}^{20}$ This can be interpreted in terms of the rigidity of phen ligands and the diflerence of valenee state of cobalt. The two phen ligands are bidentately honded to cobalt, foming live-member chelate rings. The Co-N bond distances are shorter than the Co-N bond distanees found in other Co^{2} with N atom coordinated compleses ${ }^{21-22}$ and longer than those found in Co^{31} coordinated complexes. ${ }^{23-1.5}$ The bond distances of $\mathrm{Co}-\mathrm{N}(\mathrm{I})$ and $\mathrm{Co}-\mathrm{N}(3)$ which are trans to the Cl and $\mathrm{H}_{2} \mathrm{O}$ are slightly longer than those of $\mathrm{Co}-\mathrm{N}(2)$ and $\mathrm{Co}-\mathrm{N}(4)$ which are cis to the Cl and [$\mathrm{I}_{2} \mathrm{O}$. The longest bond distance is $\mathrm{Co}-\mathrm{N}(3)$, which can be interpreted on the basis of the repulsion elleet of Cl^{-}ion having bigger volume than O atom. The bond distances of $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ in the title compound all fall within the range of the literature values ${ }^{20}$ The two aromatic ring swiems in each phen are coplanar under the experimental error. The dihedral angles between the fwo phen ligands is 84.1 ${ }^{\circ}$. The four lattice water molecules [O(2). O(3). $O(4)$ and $O(5)$ form hydrogen bonded to each other
and $O(3)$ with $O(4)$ form the strongest hydrogen bond. The O(3)-O(4) distance is 2.33 A , which is $0.43 \AA$ and 0.50 A , shonter than that or ice $(2.76 \mathrm{~A})$ and pure water (2.83 A), nespectively. ${ }^{2-28}$ The guest Cl^{-}ion with coordinated water foms hydrogen bond comecting two $\left[\mathrm{Co}(\mathrm{phen})_{2}(\mathrm{Cl})\left(\mathrm{H}_{2} \mathrm{O}\right)\right\rceil^{1}$ molecules. The coordinated Cl atom with guest water foms hydrogen bond. In the solid state the intermolecular hydrogen bonds connect the [Co(phen): $(\mathrm{Cl})\left(11_{2} \mathrm{O}\right) \mathrm{J}^{1}, \mathrm{H}_{2} \mathrm{O}$ moieties and chloride ion and make the title compound fom three dimensional network structure.

Acknowledgments. This work was supported by Natural Science Foundation ol Shandong Provinee (No. Y2002 B06). China.

REFERENCES

1. Bartom, J. K. Science 1986. 233, 727.
2. Naing. K.: Takashani. M.: Taniguchi. M.: Yamagishi. A. Inong. Chem 1995. 34. 350.
3. Sammes. I? C.: Yalioglu. G. Chem. Soc: Rev: 1994. 327.
4. Arounaguiri. S.: Maiya. B. G. Inorg. Chem. 1996. 35. $+267$.
5. Martell. A. E.: Harris. W. R. J. A/ot. Catat. 1980. 7.99.
6. Harris. W. R.: Bess. R. C.: Martell. A. E.: Ridgway. I. H. J. Am. Chem. Soc. 1977. 99. 2958.
7. Harris. W. R.: Martell. A. E. J. Coond Chem. 1980. Io. 107.
8. MacKenzie. E. D. J. Chem. Soc. A 1969. 1655.
9. Bogucki. R. E.: Melendon. G.:. Marell. A. E. J. Am. Chem. Soc. 1976. 99. 3202.
10. Gillard. R. D. J. Chem. Soe . 1967, 917.
11. Yasui. T. Bull. (hem Sot Jph. 1975, 48, 454
12. Ablov. A. V. Russ J. fhorg (hem. 1961. 6. 1112.
13. Ye. B. H.: Leng. T. X.: Han. P:. ,Ii. L. N. Zhomgstam Daxw .1mbao 1994. $33(8) .52$.
14. Sheldrick. G. M. SHELXIL5. The Comptefe Sofoware Package for Single Crustal Simetwe Detemmation. Siemens. AG. Analytical Şsums Aul37. D76181 Kantsulue 21. Germany (1995).
15. Sheldrick. G. M. Ictc ('pest. Sect. A 1969. 46. 467.
16. Sheldrick. G. M. SHIII.XTI.93, Program for ') m stat Structure reforment. Utiversity of Crottingen. Germany (1993).
17. Wilson, A. J. Intemational Table for 1-ray (installographe: volume C. 1992: Kluwer Academic Publishers. Dordrocht: Tables 6.1.1.4 (pp. 500-5502) and 4.2 .6 .8 (pp. 219-222) respretively:
18. Ye, B. II.: Chen. X. M.: 7.eng. T. X.: Ji. I.. N. Polyhedron, 1994. 13, 2185.
19. Kom. Y. Koord Khim. 1982. 8, 225.
20. Mcepad. A. A.: Ablow. A. V. Dohl. Acred. Acme. SSSR 1966. 167. 1251.
21. Shi. X. H.: You. X. L.: Li. C.: Xiong. R. G.: Yu. K. B. Tromsition Met. Chem. 1995. 20. 191.
22. Gou. S. H.: You. X. L.: Yu. K. B.: Lu. J. P. hnoy. Chmm. 1993. 32. 1883.
23. Guild. B. C.: Hayden. T.: Brennan. T. F. Cresst. Stract. Commatr. 1980. 9. 371.
24. Niederhaller. E. C.: Martell. A. E.: Rudali. P.: Cleariek. A. horg. Chem. 1982. 21. 3734.
25. McAulile. C. A.: P'ritchard. R. G.: Bemejo. M. R.: GarciaVazquez. A.: Macias. A.: Romero. J.: Sousal. A. Actu Crast. 1992. C48. 1841.
26. Tian. Y. P.: Duan. C. Y.: Xu, X. X.: You, X. 7. . Leta (Thst. 1995. C5/. 2309
27. Pang. J..: I.ucken. Г.. A. C.: Bernardinelli. G. ./. tm. (hem. Soc 1990. H2, 8754.
28. Xiong. R. G..: Jiu. C. M.: 7uo. I. J..: Ti. H. 7.:. You. X. 7.: Fun. II. K.: Sivakumar. K. Pohbedron. 1997. 16. 2.315.
