DOI QR코드

DOI QR Code

Cathodoluminescence Enhancement of CaTiO3:Pr3+ by Ga Addition

  • Kang, Seung-Youl (Basic Research Laboratory, Electronics and Telecommunication Research Institute) ;
  • Byun, Jung-Woo (Basic Research Laboratory, Electronics and Telecommunication Research Institute) ;
  • Kim, Jin-Young (Basic Research Laboratory, Electronics and Telecommunication Research Institute) ;
  • Suh, Kyung-Soo (Basic Research Laboratory, Electronics and Telecommunication Research Institute) ;
  • Kang, Seong-Gu (Department of Chemical Engineering, Hoseo University)
  • Published : 2003.05.20

Abstract

The phosphor $CaTiO_3:Pr^{3+}$ attracts much attention as a low-voltage red phosphor because of its good chromaticity and intrinsic conductivity. The addition of Ga into this CaTiO₃:Pr led the luminance intensity to greatly enhance without the change of the wavelength for the electronic transition and the peak shape of it. The increase of the recombination rate of electron-hole pairs through the Ga ion doping, which was expected to play a role of a hole-trap center, is proposed to be one of the reasons for the enhancement of the cathodoluminescence intensity.

Keywords

References

  1. Yoo, J. S.; Lee, J. D. Proceedings of the 15th International Display Research Conference 1995, 647.
  2. Itoh, S.; Toki, H.; Sato, Y.; Morimoto, K.; Kishino, T. Jpn. J. Appl. Phys. 1993, 32, 3955. https://doi.org/10.1143/JJAP.32.3955
  3. Cho, S. H.; Yoo, J. S.; Lee, J. D. J. Electrochem. Soc. 1996, 143, L231. https://doi.org/10.1149/1.1837154
  4. De Mello Dongega, C.; Meijerink, A.; Blasse, G. J. Phys. Chem. Solids 1995, 56, 673. https://doi.org/10.1016/0022-3697(94)00183-9
  5. Hyeon, K. A.; Byeon, S. H.; Park, J. C.; Kim, D. K.; Suh, K. S. Solid State Commun. 2000, 115, 99. https://doi.org/10.1016/S0038-1098(00)00127-7
  6. Vecht, A.; Smith, D. W.; Chadha, S. S.; Gibbons, C. S.; Koh, J.; Morton, D. J. Vac. Sci. Technol. 1994, B12, 781.
  7. Diallo, P. T.; Boutinaud, P.; Mahiou, R.; Cousseins, J. C. Phys. Stat. Sol. (a) 1997, 160, 255. https://doi.org/10.1002/1521-396X(199703)160:1<255::AID-PSSA255>3.0.CO;2-Y
  8. Chadha, S. S.; Smith, D. W.; Vecht, A.; Gibbons, C. S. SID 94 Digest 1994, 51.

Cited by

  1. Improvement of luminescence properties of Ca0.8Zn0.2TiO3:Pr3+ prepared by hydrothermal method vol.28, pp.18, 2013, https://doi.org/10.1557/jmr.2013.225
  2. Study of the photoluminescence properties of crystal phosphors SrTiO3:Pr3+ and SrTiO3:Pr3+, Al vol.118, pp.5, 2015, https://doi.org/10.1134/S0030400X15050112
  3. phosphor by optimized hydrothermal conditions vol.32, pp.6, 2017, https://doi.org/10.1002/bio.3283
  4. Moderate Voltage Cathodoluminescence of Y2O2S:Eu, SrGa2S4:Eu, and ZnS:Ag,Al for CNT-FEDs vol.27, pp.10, 2003, https://doi.org/10.5012/bkcs.2006.27.10.1708
  5. Low-temperature preparation and properties of ceramics with composition (1−x)CaTiO3xPbF2xLiF vol.68, pp.5, 2007, https://doi.org/10.1016/j.jpcs.2007.01.005
  6. Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence: Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O vol.114, pp.15, 2003, https://doi.org/10.1021/jp911885c
  7. Continuous hydrothermal synthesis of Ca1−x Sr x TiO3 solid-solution nanoparticles using a T-type micromixer vol.85, pp.None, 2014, https://doi.org/10.1016/j.supflu.2013.11.010