References
- Peterson, G. L. Anal. Biochem. 1979, 100, 201. https://doi.org/10.1016/0003-2697(79)90222-7
- Bradford, M. M. Anal. Biochem. 1976, 72, 248. https://doi.org/10.1016/0003-2697(76)90527-3
- Mc Intosh, J. C. Clin. Chem. 1977, 23, 1939.
- Huang, C. M. Clin. Chem. 1988, 34, 980
- Flores, R. Anal. Biochem. 1978, 88, 605. https://doi.org/10.1016/0003-2697(78)90462-1
- Ma, C.; Li, C.; Tong, S. Anal. Chim. Acta 1997, 338, 255. https://doi.org/10.1016/S0003-2670(96)00444-8
- Huang, C.; Li, Y.; Mao, J.; Tan, D. Analyst 1998, 123, 1401. https://doi.org/10.1039/a708054i
- Yao, G.; Li, K.; Tong, S. Anal. Chim. Acta 1999, 398, 319. https://doi.org/10.1016/S0003-2670(99)00415-8
- Wang, J.; Vila, V.; Tapia, T. Bioeletrochem. Bioenerg. 1988, 19,39. https://doi.org/10.1016/0302-4598(88)85004-9
- Estela, J. M.; Tomas, C.; Cladera, A.; Cerda, V. Crit. Rev. Anal.Chem. 1995, 259, 91.
- Honeychurch, M. J.; Ridd, M. J. Electroanalysis 1996, 8, 654. https://doi.org/10.1002/elan.1140080710
- Honeychurch, M. J.; Ridd, M. J. Electroanalysis 1996, 8, 49. https://doi.org/10.1002/elan.1140080111
- Tomschik, M.; Havran, L.; Fojta, M.; Pale cek, E. Electroanalysis1998, 10, 403. https://doi.org/10.1002/(SICI)1521-4109(199805)10:6<403::AID-ELAN403>3.0.CO;2-2
- Joo, I. S.; Lee, S. H.; Suh, J. K.; Kim, C. J. Anal. Sci. 2002, 17,117.
- Hara, T.; Yokogi, J.; Okamura, S.; Kato, S.; Nakajima, R. J. ofChromatog. A 1993, 652(2), 361. https://doi.org/10.1016/0021-9673(93)83254-P
- Li, Z.; Li, K.; Tong, S. Microchem. J. 1998, 60, 217. https://doi.org/10.1006/mchj.1998.1666
- Opiteck, G. J.; Lewis, K. C.; Jorgenson, J. W. Anal. Chem. 1997,69, 1518. https://doi.org/10.1021/ac961155l
- Whittal, R. M.; Russon, L. M.; Li, L. J. Chromatog. A 1998, 794,367. https://doi.org/10.1016/S0021-9673(97)00776-0
- Murray, K. K. Mass Spectrom. Rev. 1997, 16, 283. https://doi.org/10.1002/(SICI)1098-2787(1997)16:5<283::AID-MAS3>3.0.CO;2-D
- Ghoudhary, G.; Chakel, J.; Hancock, W.; Torres-Duarte, A.;Mahon, G.; Wainer, I. Anal. Chem. 1999, 71, 855. https://doi.org/10.1021/ac980633k
- Yeung, K. C.; Kiceniuk, A. G.; Li, L. J. of Chromatog. A 2001,931, 153. https://doi.org/10.1016/S0021-9673(01)01200-6
- Qin, W.; Gong, G.; Song, Y. Spectrochimica Acta Part A 2000, 56,1021. https://doi.org/10.1016/S1386-1425(00)00215-8
- Ruiz, T. P.; Lozano, C. M.; Tomas, V.; Fenoll, J. Analyst 1986,125, 507.
- Athar, H.; Ahmad, N.; Tayyab, S.; Qasim, M. A. InternationalJournal of Biological Macromolecules 1999, 25, 353. https://doi.org/10.1016/S0141-8130(99)00056-2
Cited by
- Recapture of GFP Chromophore Fluorescence in a Protein Host vol.13, pp.3, 2011, https://doi.org/10.1021/co200025e
- Spectrofluorimetric Determination of Human Serum Albumin Using Terbium-Danofloxacin Probe vol.2012, pp.1537-744X, 2012, https://doi.org/10.1100/2012/940541
- A thermodynamic study of the Fe2O3-H2-CO system vol.46, pp.1, 2012, https://doi.org/10.3103/S0361521912010053
- A novel water-soluble polythiophene derivatives based fluorescence “turn-on” method for protein determination vol.130, pp.2, 2013, https://doi.org/10.1002/app.39166
- Synthesis of ZnO Nanosphere for Picomolar Level Detection of Bovine Serum Albumin vol.14, pp.1, 2015, https://doi.org/10.1109/TNB.2014.2359072
- Characteristic Fluorescence Response of (6-Hydroxy-2-naphthyl)ethenyl Pyridinium Dyes with Bovine Serum Albumin vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10055
- Study of polyethylene glycol-fluorophore complex formation by fluorescence correlation spectroscopy vol.24, pp.11, 2016, https://doi.org/10.1007/s13233-016-4142-1
- Spectral-luminescent manifestation of the damaging action of brain ischemia on blood serum components vol.72, pp.6, 2005, https://doi.org/10.1007/s10812-006-0024-1
- Microdetermination of human serum albumin by differential pulse voltammetry at a l-cysteine modified silver electrode vol.120, pp.4, 2008, https://doi.org/10.1007/s12039-008-0066-4
- A reversed-phase high-performance liquid chromatography method for bovine serum albumin assay in pharmaceutical dosage forms and protein/antigen delivery systems vol.1, pp.5, 2009, https://doi.org/10.1002/dta.33
- A spectroscopic study of a cyclodextrin-based polymer and the “molecular accordion” effect pp.1480-3291, 2018, https://doi.org/10.1139/cjc-2018-0420
- Study on a Fluorometric Method for the Determination of Protein in Serum Using Quercetin‐Lanthanum (III)‐Sodium Dodecyl Benzene Sulfonate‐Protein System vol.39, pp.1, 2003, https://doi.org/10.1080/00032710500423401
- Fluorometric determination of proteins using the terbium (III)-2-thenoyltrifluoroacetone-sodium dodecyl benzene sulfonate-protein system vol.121, pp.2, 2003, https://doi.org/10.1016/j.jlumin.2005.12.047
- Water‐Soluble Nile Blue Derivatives: Syntheses and Photophysical Properties vol.15, pp.2, 2003, https://doi.org/10.1002/chem.200801104
- Photophysical studies of PET based acridinedione dyes with globular protein: Bovine serum albumin vol.130, pp.7, 2003, https://doi.org/10.1016/j.jlumin.2010.02.022
- Protein determination using methylene blue in a synchronous fluorescence technique vol.81, pp.3, 2010, https://doi.org/10.1016/j.talanta.2010.01.014
- NMR analysis of Nile Blue (C. I. Basic Blue 12) and Thionine (C. I. 52000) in solution vol.88, pp.3, 2003, https://doi.org/10.1016/j.dyepig.2010.07.014
- Interaction between carisoprodol and bovine serum albumin and effect of β-cyclodextrin on binding: insights from molecular docking and spectroscopic techniques vol.6, pp.68, 2003, https://doi.org/10.1039/c6ra08063d
- Ninhydrin-sodium molybdate chromogenic analytical probe for the assay of amino acids and proteins vol.173, pp.None, 2003, https://doi.org/10.1016/j.saa.2016.10.040