DOI QR코드

DOI QR Code

Preparation of Copper(Cu) Thin Films by MOCVD and Their Conversion to Copper Selenide (CuSe) Thin Films through Selenium Vapor Deposition

  • Published : 2003.05.20

Abstract

Keywords

References

  1. Haram, S. K.; Santhanam, K. S. V.; Neumann-Spallart, M.; Levy-Clement, C. Mater. Res. Bull. 1992, 27, 1185. https://doi.org/10.1016/0025-5408(92)90226-P
  2. Korzhuev, A. A. Fiz. Khim. Obrab. Mater. 1991, 3, 131.
  3. Chen, W. S.; Stewart, J. M.; Mickelsen, R. A. Appl. Phys. Lett.1985, 46, 1095. https://doi.org/10.1063/1.95773
  4. Stevels, A. L. N.; Jellinek, F. Recueil 1971, 111, 273.
  5. Heyding, R. D. Can. J. Chem. 1966, 44, 1233. https://doi.org/10.1139/v66-183
  6. Okimura, H.; Matsumae, T. Thin Solid Films 1980, 71, 53. https://doi.org/10.1016/0040-6090(80)90183-2
  7. García, V. M.; Nair, P. K.; Nair, M. T. S. J. Cryst. Growth 1999, 203, 113. https://doi.org/10.1016/S0022-0248(99)00040-8
  8. Frederickson, A. R.; Levy, L.; Enloe, C. I. IEEE. Trans. Elec. Insul. 1992, 27, 1166. https://doi.org/10.1109/14.204868

Cited by

  1. An Alternative Method to Grow Ge Thin Films on Si by Electrochemical Deposition for Photonic Applications vol.159, pp.2, 2012, https://doi.org/10.1149/2.090202jes
  2. Structural, morphological, optical and electrical properties of Cu0.87Se thin films coated by electron beam evaporation method vol.120, pp.3, 2015, https://doi.org/10.1007/s00339-015-9286-x
  3. Electrodeposition and Thermoelectric Properties of Cu-Se Binary Compound Films vol.45, pp.3, 2016, https://doi.org/10.1007/s11664-016-4344-5
  4. Theoretical Investigations on the Structural, Electronic and Spectral Properties of VFn (n = 1–7) Clusters vol.0, pp.0, 2018, https://doi.org/10.1515/zna-2018-0102
  5. The geometric and spectroscopic features of (CuSe)n = 2–8 binary nanoclusters: a theoretical study vol.20, pp.11, 2018, https://doi.org/10.1007/s11051-018-4404-2
  6. Q and CuQ (Q = O, S, Se, and Te) studied by first-principles calculations vol.5, pp.1, 2018, https://doi.org/10.1088/2053-1591/aaa369
  7. Syntheses of Liquid Phase [(efac)Ag(P(OR)3)] Precursors and Their Application to the Preparation of Silver and Silver Selenide Thin Films vol.25, pp.7, 2003, https://doi.org/10.5012/bkcs.2004.25.7.1068
  8. Preparation of In2S3 Thin Films by MOCVD Using Single Source Precursors: Tris(N,N-ethylbutyldithiocarbamato)indium(III) and Tris(2-ethylpiperidinedithiocarbamato)indium(III) vol.26, pp.9, 2003, https://doi.org/10.5012/bkcs.2005.26.9.1453
  9. Preparation of In2Se3 Thin Films by MOCVD with a New In-Se Single Source Precursor vol.27, pp.1, 2006, https://doi.org/10.5012/bkcs.2006.27.1.147
  10. Preparation of CuInSe2 thin films through metal organic chemical vapor deposition method by using di-μ-methylselenobis(dimethylindium) and bis(ethylisobutyrylacetato) copper(II) precurso vol.515, pp.4, 2003, https://doi.org/10.1016/j.tsf.2006.04.054
  11. The effect of annealing on vacuum-evaporated copper selenide and indium telluride thin films vol.58, pp.8, 2003, https://doi.org/10.1016/j.matchar.2006.11.019
  12. Preparation of CuGaS2 thin films by two-stage MOCVD method vol.92, pp.11, 2003, https://doi.org/10.1016/j.solmat.2008.05.003
  13. Deposition of CuInSe2 Thin Films Using Stable Copper and Indium-selenide Precursors through Two-stage MOCVD Method vol.30, pp.4, 2003, https://doi.org/10.5012/bkcs.2009.30.4.853
  14. Preparation of ZnO Thin Films Using Zn/O-containing Single Precursorthrough MOCVD Method vol.30, pp.1, 2003, https://doi.org/10.5012/bkcs.2009.30.1.114
  15. Transient absorption of copper selenide nanowires of different stoichiometry vol.50, pp.2, 2010, https://doi.org/10.3952/lithjphys.50201
  16. Preparation of SnS Thin Films by MOCVD Method Using Single Source Precursor, Bis(3-mercapto-1-propanethiolato) Sn(II) vol.33, pp.10, 2003, https://doi.org/10.5012/bkcs.2012.33.10.3383
  17. X-ray Diffraction Analysis of Hexagonal Klockmannite CuSe Nanoparticles for Photodetectors under UV Light vol.125, pp.6, 2021, https://doi.org/10.1021/acs.jpcc.0c09353