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Valuable insight into the nonlinear dynamics of a system can be gleaned from its response to a single intense 
short pulse. We derive expressions for the corresponding nonlinear response functions and show that the 
fluctuation-dissipation theorem may be extended beyond the linear response limit to an arbitrary pulse 
intensity. As an illustrative example, we calculate response functions up to 11th order for the regular Lorentz 
gas in two dimensions.
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Introduction

The dynamics of condensed matter systems are often 
studied experimentally by perturbing the sample with an 
external field E(t) (or a sequence of fields) and recording its 
relaxation back to equilibrium. From such a response 
information about the microscopic dynamics of the system 
can be extracted. If we use the observable B to monitor the 
evolution of the system, the n-th order response to an 
arbitrary perturbation can be succinctly written as

B(")(t) = £ dTn\Tn dTn -1 ... J：2 dT1E (Tn、)E (T„」)...

E(T2)E(T1) x S(n)(t,Tn具n-1,...,T2,T1) , (1) 

where the n-th order response function S(n) (t ,t„,t„ _],..., 
T2,T1) depends on the dynamics of the system, on how the 
system couples to the external perturbation and also on the 
variable B selected to follow the system's time evolution. For 
a system evolving classically according to Newton’s equa­
tions of motion, the nonlinear response function can be 
obtained from perturbation theory:

S( n)( t,T„ 具n-1,...,5)=

(-1 )nJ dxB(x)e iL：(t 勺)

x (A, e^M &-1) {..., e，0wT1)(A,peq身...}. (2)

Here peq is the equilibrium phase space distribution of the 
system, A(x) is the phase space variable appearing in the 
field-matter coupling H(x,t) = -E(t)A (x) and L： is the 
classical Liouville operator of the unperturbed system.

Calculation of nonlinear response functions for classical 
many-body systems requires evaluation of stability matrices 
describing the time evolution of small displacements in phase 
space.1-3 Although such stability matrices can be obtained 
from molecular dynamics simulations, they cause severe
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numerical problems; due to the fast, exponential growth of 
stability matrix elements, averages depending on stability 
matrices converge very slowly and nonlinear response func­
tions can be calculated only for short times. The response to 
a single pulse of arbitrary magnitude, however, is an 
exception. This response may be recast in the form of a 
combination of correlation functions and does not depend on 
the stability matrix. In that respect, we obtain a generali­
zation to arbitrary order of the fluctuation dissipation 
theorem,6-8 which rigorously connects the observable linear 
response function S“)(t) with an equilibrium correlation 
function of the unperturbed system (see Eq. 12): Purely 
equilibrium simulations are enough, no additional information 
is necessary for computing the response and the numerical 
simulation is then straightforward.

The n-th order response function to a single short pulse 
acting on the system at time t = 0 is

S(n)( t) = (-1 )n J dxB( x )e"L0t( A, ...{A ,p}.} (3)

when we propagate the density matrix, i.e., when we operate 
in the “Schrodinger representation”. Alternatively we can 
propagate the operators, i.e., in the “Heisenberg representa­
tion^.1,2 The response function then assumes the form

SCn)(t) =〈{A, •••{A,B(t)}…}〉. (4)

Here, B(t)三 Be '재 三 e'^B .
The Poisson bracket on the right hand side of equation (3) 

can be written as
巴」財

{A, .{A ,p}…} = * "%, (5)

rx( n)where the phase space functions Dj are obtained by 
repeated application of the Poisson bracket. The first few of 
these functions are

d" = -A, (6)

D 中=-{A,A }, d22 ) = *2, (7)
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D13) = -(A,{ A,^A}}, D23) = 3A (A ,A }, D?)= -A，.

(8)
Here, A 三 L°A . Using Eq. (5) we can then recast Eq. (3) in 
the form

n
Sn)(t) = (-1)n £ B〈B(t)Dj心). (9)

j = 1
The response functions to a single short perturbation 

become especially simple and easy to interpret if the 
observable A is one of the phase space variables. So, let us 
assume that A =心 and denote this variable q 三心 and its 
conjugate momentum p. Then, the single pulse response 
function of order n in the Heisenberg picture assumes the 
form

Figure 1. The Lorentz gas consists of a point particle moving 
through an infinite periodic array of hard scatterers in two 
dimensions. When the particle collides with a scatterer it is 
reflected elastically, i.e., its velocity component normal to the 
scatterer surface is inverted. Here we imagine that the moving 
particle carries a unit charge and that the perturbation is a short 
pulse of strength E accelerating the particle in x-direction.

S(n) =〈 dB (t)) 

dpn(0)
(10)

The partial derivatives in the above equation can be easily 
evaluated with the following recursion formula correspond­
ing to an integration by parts:

/ k dB( t) 2 kdB (t)
p (0)、-- ) = CI dpexp( —伽 /2m)p --느

\ dpn(0) dpn

= -CJ dpg-l exp( 一伽2眼妒으-씌。

dp dp

B k +1 d-1B(t)\ ，/ k-1 d-1 b(tA= -- p (0)「으- - kl p (0)  .
m dpn-1(0) dpn-1 (0)/

(11)
Here, C is a normalization constant. Repeated application of 
this recursion formula yields nonlinear response functions to
arbitrary order:

S( 1)(t) = yC , (12)

S(2)(t) = j-C2- tC0, (13)

S( 3)( t) = / C3-3/1 C1, (14)

S( % t)=寸 C4-6Y3 C2 + 3/!C0, (15)

S( * t) = Y，C5-10^ C3 + 15/C1, (16)

S(6)(t) = j5C6-15/5C4 + 45t4C - 15/C0, (17)

S°)(t) = y C7-21YC5 + 105/C3 - 105/4C1, (18)

S(8)(t) = BC8 - 28 jC6 + 210 YC4 - 420/C2
+ 105 Y4 C0, (19)

S(이(t) = jC9-36Y8C7 + 378/C5 - 1260y5C；
+ 945/ C" (20)

S(10)(t) = /10C10-45YC + 630/8c6 - 3150/C4
+ 4725 6C2 945 5C0 (21)

/ t / t ,

S(11)(t) = z11 C11 - 55/1°C + 990/C7 - 6930/C：

+ 17325 7C3 10395 6C1 (22)/ t / t ,

where y三 B/m and C^ 三〈pn(0)B(t)). Higher order 
response functions can be evaluated analogously. The first 
equation in the hierarchy, Eq. (12), is known as the 
fluctuation dissipation theorem.6-8

As an illustrative example, we have calculated the response 
of the Lorentz gas4 to short pulses. This model, shown in 
Figure 1, consists of a point particle of mass m with 
momentum p moving in a plane through an infinite regular 
array of circular scatterers with radius R arranged on a 
triangular lattice with lattice constant a. When the particle 
collides with a scatterer it is reflected elastically, i.e., its 
velocity component normal to the scatterer surface changes 
sign. Between collisions the particle moves on a straight line 
with constant velocity. Due to the collisions of the particle 
with the convex (and therefore dispersing) surface of the 
scatterer the dynamics is strongly chaotic.5

Throughout, we study a system in which the scatterer 
density is p = 4/5 p(), where p()is the close packed density 
at which the scatterers are in contact. At this particular 
density p = (1/2 ”3 )R~ and the lattice constant is 시 =」§R . 
Since at p = 4/5 p° the horizon is finite, i.e., the particle can 
fly freely only for finite distances, the motion of the particle 
is strictly diffusive. Initial conditions of the moving particle 
are assumed to follow a canonical distribution, i.e., positions 
r 三{ rx, ry} are homogeneously distributed in the area not 
occupied by the scatterers and momenta p = { px p} are 
distributed according to P(p) ^ exp {-侦叫 + py )/2m }. 
All results are presented in dimensionless units with B = 1, 
R =1 and m = 1.

Nonlinear response functions from order 1 to 11 obtained
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Figure 2. Response functions S(1)(t) to S(11)(t) to a single short 
pulse acting on the Lorentz gas depicted in Fig. 1 (all response 
functions of even order vanish due to symmetry). The response 
functions shown in the figure where obtained from correlation 
functions calculated as averages over 2 x 109 trajectories initiated at 
canonically distributed initial conditions and for a density of p = 
(4/5)po where po is the close packed density. The average time 
between collisions is t = 0.474 in the units described in the main text.

numerically for the Lorentz gas using Eqs. (12) to (22) are 
shown in Figure 2 as thick lines. Since all even n response 
functions vanish by symmetry, only the odd n response 
functions are depicted. The thin lines denote results for a 
stochastic model to be discussed later. While the first order 
response decays almost monotonically, the nonlinear response 
functions acquire additional features. The first characteristic 
feature appears at approximately half the average time 
between collisions which is t = 0.474 at the density studied 
here. As one proceeds to higher order the response functions 
begin to display oscillatory behavior which becomes more 
pronounced with increasing order. The exact physical origin 
of this behavior remains to be explained in detail.

An interesting observations is that for systems with hard 
interactions, such as the Lorentz gas, canonical nonlinear 
response functions to arbitrary order can be written in terms 
of simple microcanonical autocorrelation functions. To see 
this, we write the correlation function C，n)(t) =〈 pX( 0 )Px( t)〉 
as the canonical average:

C(n)(t) = 7본克 J drdpexp[-§U(r)] 
2nmA J

X exp( -时/2m) p^ (r,p, t), (23) 

where U(r) is the potential energy of the system and r and p 
specify the position and the momentum of the moving 
particle, respectively. The integration over space extends 
over the unit cell of the triangular scatterer lattice and A is 
the area in the unit cell not occupied by a scatterer. The 
above expression can be simplified by noting that initial 
conditions differing only in the magnitude of the momentum 
but not in its direction yield identical trajectories in 
configuration space. Integration over all momentum directions 
then yields:

c""(t) = m J dpexp(-伽2/2m)pn + 2聲?(tp/m), (24) 

where p = \p\ and eg"t) =骐、0切工(世、、)mC is a 
microcanonical correlation function. Since for a system with 
hard interactions

0( 0"x(t)/，2〉mc =〈Km、)mc〈0x( 0 "x(tp2mc (25)

and if n even

0/p) mc = ] 0 if 皿 even (26)
[n!!/(n + 1)!! if n odd

Figure 3. Deviation AS") 三 S")(t) 一 Ss2(t) of the response func­
tions S(1)(t) to S(11)(t) from the response functions predicted by 
the exponential model discussed in the main text. Since the 
exponential model is based on the assumption that subsequent 
collisions are uncorrelated, any non-vanishing deviation AS(i)( t) is 
due to correlated collisions of the moving particle with the 
scatterers.
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the correlation function C)(t) can be finally written as

c( n)( t)=(--+昂 m j dp exp (一伽從，〃) pn+2

X〈Px( 0 )Px(Mm)/p2〉mc， (27)

for odd order. For even order, C허)(t) vanishes. From these 
correlation functions response functions can be calculated 
using expressions (12) to (22).

This relation between canonical and microcanonical corre­
lation functions allows us to analyze the information content 
of the nonlinear response functions shown in Figure 2 using 
a stochastic model lacking correlations. In this model we 
assume that subsequent collisions of the moving particle 
with the scatterers are uncorrelated and that times between 
collisions are distributed exponentially with an average 
collision time of T (Poisson process). We furthermore assume 
that at each collision the particle's velocity is randomized 
such that all memory of the incoming velocity is lost (strong 
collisions). In this case

C허)(t)= - ：!；"- J dpexp( 一伽秘m)pn + 2exp(-t/T),
(n + 1)!!m (28)

for odd order. Thus the only parameter in this model is the 
average time between collisions, T. Response functions up to 
11th order are shown in Figure 2 as thin dotted lines for an 
average collision time of T = 0.591 which is the collision 

time . at p = (4/5)p° for a particle with unit speed. The deviations 
AS)(t)三萨)(t) - $2(t) of the response functions S(1)(t) 
to S⑴)(t) of the Lorentz gas from the corresponding response 
functions $%?(t) to ^匕皿t) predicted by the stochastic 
model are shown in Figure 3. By construction, the stochastic 
model neglects all correlations between subsequent collisions. 
Any non-vanishing value of the deviation AS"(t) must be 
therefore attributed to correlated collision sequences. The 
signature of such correlated events is clearly visible in higher 
order response functions shown in Figure 2. Higher order 
response functions should therefore be capable of serving as 
sensitive probes for correlated cooperative motion in molecular 
systems.

Acknowledgment. The support of the Office of Basic 
Energy Science of the Department of Energy, grant no. DE- 
FG02-01ER15155 is gratefully acknowledged.

References

1. Dellago, C.; Mukamel, S. Phys. Rev. Lett. E 2003, 67, 035205(R).
2. Dellago, C.; Mukamel, S. J. Chem. Phys. 2003, in print.
3. Mukamel, S.; Khidekel, V; Chernyak, V Phys. Re^v. E 1996, 53, 

R1-R4.
4. Machta, J.; Zwanzig, R. Phys. Rev. Lett. 1983, 50, 1959.
5. Dellago, C.; Posch, H. A. Phys. Rev. E 1995, 52, 2401.
6. Onsager, L. Phys. Rev. 1931, 37, 405; Phys. Rev. 1931, 38, 2265.
7. Callen, H. B.; Welton, T. A. Phys. Rev. 1951, 83, 34.
8. Kubo, R. Rep. Progr Phys. 1966, 29, 255.


