DOI QR코드

DOI QR Code

Synthesis of Carbon Nanotubes from Catalytic Decomposition of C2H2 through Pd/Al2O3 Catalysts

  • Han, Ju-Tack (Department of Chemistry, Kyungpook National University) ;
  • Woo, Ja-Hee (Department of Chemistry, Kyungpook National University) ;
  • Kim, Hae-Sic (Department of Chemistry, Kyungpook National University) ;
  • Jee, Jong-Gi (Department of Chemistry, Kyungpook National University)
  • Published : 2003.12.20

Abstract

CNTs have been synthesized by catalytic $C_2H_2$ decomposition through $Pd/Al_2O_3$ at low temperature. The CNTs were grown to a length of about 10 ${\mu}$m and diameter 150-200 nm with multiwalled structure. Pd catalysts have two major roles; one is the active catalyst for $C_2H_2$ decomposition, the other is a nucleation site of CNT's growth.

Keywords

References

  1. Lee, J. K.; Choi, S. M. Bull. Korean Chem. Soc. 2003, 24, 32. https://doi.org/10.5012/bkcs.2003.24.1.032
  2. Jung, O. J.; Kim, S. H.; Cheong, K. H.; Li, W. S.; Saha, I. Bull. Korean Chem. Soc. 2003, 24, 49. https://doi.org/10.5012/bkcs.2003.24.1.049
  3. Iijima, S. Nature (London) 1991, 354, 56. https://doi.org/10.1038/354056a0
  4. Guo, T.; Nikolaev, P.; Rinzler, A. G.; Tomanek, D.; Colbert, D. T.; Smalley, R. E. J. Phys. Chem. 1995, 99, 10694. https://doi.org/10.1021/j100027a002
  5. Yudasaka, M.; Komatsu, T.; Ichihashi, T.; Iijima, S. Chem. Phys. Lett. 1997, 278, 102. https://doi.org/10.1016/S0009-2614(97)00952-4
  6. Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegel, M. P.; Provencio, P. N. Science 1998, 282, 11057.
  7. Ivanov, V.; Fonseca, A.; Nagy, J. B.; Lucas, A.; Lambin, P.; Bernaerts, D.; Zhang, X. B. Carbon 1995, 33, 1727. https://doi.org/10.1016/0008-6223(95)00132-1
  8. Lyu, S. C.; Liu, B. C.; Lee, T. J.; Liu, Z. Y.; Yang, C. W.; Park, C. Y.; Lee, C. J. Chem. Commun. 2003, 6, 734.
  9. Li, Y.; Chen, J.; Qin, Y.; Chan, L. Energy & Fuels American Chemical Society 2000, 14, 1188. https://doi.org/10.1021/ef0000781
  10. Ryu, C. K.; Wong, M.; Ryu, I. S.; Kang, S. K. Catalysis Today 1999, 47, 141. https://doi.org/10.1016/S0920-5861(98)00293-4
  11. Hoyos, L. J.; Paliaud, H.; Primet, M. Appl. Catal. 1992, A81, 227.
  12. Steinberg, M.; Cheng, M. J. Hydrogen Energy 1984, 14, 797. https://doi.org/10.1016/0360-3199(89)90018-9
  13. Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126. https://doi.org/10.1063/1.1674108
  14. Chen, X. H.; Chen, C. S.; Chen, Q.; Cheng, F. Q.; Zhang, G.; Chen, Z. Z. Mater. Lett. 2002, 57, 734. https://doi.org/10.1016/S0167-577X(02)00863-7
  15. Al-Jishi, R.; Dresselhaus, G. Phys. Rev. 1982, B26, 4514.
  16. Shi, S. J.; Lian, Y. F.; Liao, F. H.; Zhou, X. H.; Gu, Z. N.; Zhang, Y.; Iijima, S. Solid State Commun. 1999, 300, 2555.
  17. Kesmodel, L. L.; Waddill, G. D.; Gates, J. A. Surf. Sci. 1984, 138, 464. https://doi.org/10.1016/0039-6028(84)90259-0
  18. Shah, N.; Panjala, D.; Huffman, G. P. Energy & Fuels American Chemical Society 2001, 15, 1528. https://doi.org/10.1021/ef0101964

Cited by

  1. CNT Growth Behavior on Ti Substrate by Catalytic CVD Process with Temperature Gradient in Tube Furnace vol.21, pp.5, 2014, https://doi.org/10.4150/KPMI.2014.21.5.371
  2. Characterization of Soot Produced from Thermal Decomposition of Hydrocarbon Fuel vol.27, pp.6, 2016, https://doi.org/10.7316/KHNES.2016.27.6.747
  3. Low Temperature Growth of Vertically Aligned Carbon Nanotubes via Floating Catalyst Chemical Vapor Deposition Method vol.27, pp.4, 2003, https://doi.org/10.1016/s1005-0302(11)60065-0