DOI QR코드

DOI QR Code

Electrochemical Behavior of Poly 8-(3-Acetylimino-6-methyl 2,4-dioxopyran)-1-aminonaphthaline in Aqueous and Non Aqueous Media

  • Hathoot, A.A. (Department of Chemistry, Faculty of Science, El-Menoufia University)
  • Published : 2003.11.20

Abstract

The electrooxidation of 8-(3-acetylimino-6-methyl 2,4-dioxopyran)-1-aminonaphthaline (AMDAN) in aqueous and non aqueous media led to the formation of polymeric films, poly (AMDAN). The monomer, undergo anodic oxidation through the formation of a monocation radical irrespective of the nature of the medium. In aqueous medium, the monocation radical undergoes, through its resonance structures, dimerisation involving tail-to-tail, head-to-tail and even head-to-head coupling. The products formed, being more easily oxidisable than the parent substance, undergo further oxidation at the same potential so that the overall oxidation involves a one-step (i.e., a single wave), two-electron process. In non-aqueous medium, the monocation radical does not undergo dimerisation through coupling reactions. Retaining its identity, monomer oxidise in two steps involving one electron in each step. The fact that the cathodic peaks corresponding to these anodic peaks are rarely observed indicates fast consumption of the electrogenerated monocation radicals and dications by follow-up chemical reactions to produce polymeric products (poly AMDAN). The electrochemical behavior of the formed polymer films was investigated in both non aqueous and aqueous media. The films prepared in non aqueous medium were found to be more electroactive than that the films prepared in aqueous medium. This is confirmed with the results in litreature which illustrate that the film prepared in aqueous solution hold water in its structure via hydrogen bonding, which causes decomposition reactions.

Keywords

References

  1. Novak, P.; Muller, K.; Santhanam, K. S. V.; Hass, O. Chem. Rev.1997, 97, 207. https://doi.org/10.1021/cr941181o
  2. Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S.; Ferraris, J. P. J.Power Sources 1994, 47, 89. https://doi.org/10.1016/0378-7753(94)80053-7
  3. Arbizzani, C.; Mastragostino, M.; Scrosati, B. Conductive Polymers:Transport, Photophysics and Applications, in Handbook ofOrganic Conductive Molecules and Polymers; 1997; Nalwa,H. S. Ed.; John Wiley & Sons, Ltd.: Chichester, England; Vol. 4,p 595.
  4. Ferraris, J. P.; Eissa, M. M.; Brotherson, I. D.; Loveday, D. C.Chem. Mater. 1998, 10, 3528. https://doi.org/10.1021/cm9803105
  5. Garcia, B.; Fusalba, F.; Belanger, D. Can. J. Chem. 1997, 75,1536. https://doi.org/10.1139/v97-185
  6. Garcia, B.; Belanger, D. Synth. Met. 1998, 98, 135. https://doi.org/10.1016/S0379-6779(98)00183-0
  7. Satoh, M.; Kaneto, K.; Yoshino, K. J. Chem. Soc., Chem.Commun. 1982, 382.
  8. Proceedings of 4th International Seminar on Double LayerCapacitors and Similar Energy Storage Devices; Deerfield Beach,FL., 194, Dec 12-14; Vol. 4.
  9. Satoh, M.; Kaneto, K.; Yoshino, K. Synth. Met. 1986, 14, 289. https://doi.org/10.1016/0379-6779(86)90042-1
  10. Salomon, M.; Diaz, A. F.; Logan, J. A.; Krounb, M.; Bargon, J.Mol. Cryst. Liq. Cryst. 1982, 83, 265. https://doi.org/10.1080/00268948208072175
  11. Kobayashi, T.; Yoneyama, H.; Tamura, H. J. Electroanal. Chem.Interfacial Electrochem. 1984, 177, 293. https://doi.org/10.1016/0022-0728(84)80230-2
  12. Skotheim, T. A. Handbook of Conducting Polymers; MarcelDekker: New York, 1986.
  13. Meneguzzi, A.; Pham, M. C.; Lacroix, J. C.; Piro, B.; Adenier, A.;Ferreira, C. A.; Lacaze, P. C. J. Electrochem. Soc. 2001, 148(4),B121. https://doi.org/10.1149/1.1354613
  14. Vettorazzi, N.; Silber, J. J.; Sereno, L. J. Electroanal. Chem. 1983,158, 89.
  15. Abd El-Rahman, H. A.; Hathoot, A. A.; Bagoury, M. E.; AbdelAzzem, M. J. Electrochem. Soc. 2000, 147(1), 242. https://doi.org/10.1149/1.1393182
  16. Yousef, U. S.; Hathoot, A. A.; Abdel-Azzem, M. Euro. Pol. J.2001, 37, 1267. https://doi.org/10.1016/S0014-3057(00)00145-2
  17. Barbero, C.; Silber, J. J.; Sereno, L. J. Electroanal. Chem. 1989,263, 333. https://doi.org/10.1016/0022-0728(89)85103-4
  18. Arevalo, A. H.; Fernandez, H.; Silber, J. J.; Sereno, L.Electrochim. Acta 1990, 35, 741. https://doi.org/10.1016/0013-4686(90)90008-N
  19. Meneguzzi, A.; Pam, M.; Lacroix, J. C.; Piro, B.; Adenier, A.;Ferreira, C. A.; Lacaze, P. C. J. Electrochem. Soc. 2001, 148(4), B121. https://doi.org/10.1149/1.1354613
  20. Sharma, L. R.; Manchanda, A. K.; Singh, G.; Verma, R. S.Electrochimica Acta 1982, 27(2), 223. https://doi.org/10.1016/0013-4686(82)80007-8
  21. Heinje, J. Electronically Conducting Polymers in Topics inCurrent Chemistry; Springer: Berlin, 1990; Vol. 152.
  22. Wei, Y.; Sun, Y.; Tanq, X. J. Phys. Chem. 1989, 93, 4878. https://doi.org/10.1021/j100349a039
  23. Kitani, A.; Izumi, J.; Yano, Y.; Hiromoto, Y.; Sasaki, K. Bull.Chem. Soc. Jpn. 1984, 57(8), 2254. https://doi.org/10.1246/bcsj.57.2254
  24. Lubentsov, B. Z.; Timofeeva, O. N.; Khidekel, M. L. Synth. Met.1991, 45, 235. https://doi.org/10.1016/0379-6779(91)91808-N
  25. Osaka, T.; Nakajima, T.; Naoi, K.; Owens, B. B. J. Electrochem.Soc. 1990, 137, 2139. https://doi.org/10.1149/1.2086899
  26. Kolthoff, I. M. Anal. Chem. 1974, 46, 1992. https://doi.org/10.1021/ac60349a005
  27. Volkov, A.; Tourillon, G.; Lucaza, P. C.; Dubaj, J. E. J. Electroanal.Chem. 1980, 115, 279 https://doi.org/10.1016/S0022-0728(80)80332-9
  28. Ohsaka, T.; Ohnuki, Y.; Oyama, N.;Katagiri, G.; Kamisako, K. J. Electroanal Chem. 1984, 161, 399. https://doi.org/10.1016/S0022-0728(84)80198-9
  29. Kobayashi, N.; Yamada, K.; Hirohashi, R. Electrochim. Acta1992, 37, 2101. https://doi.org/10.1016/0013-4686(92)87129-N

Cited by

  1. Simultaneous determination of ascorbic acid, uric acid and dopamine at modified electrode based on hybrid nickel hexacyanoferrate/poly(1,5-diaminonaphthalene) vol.14, pp.8, 2017, https://doi.org/10.1007/s13738-017-1119-8
  2. Supercapacitive properties of hybrid films of manganese dioxide and polyaniline based on active carbon in organic electrolyte vol.195, pp.21, 2003, https://doi.org/10.1016/j.jpowsour.2010.05.020