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Accurate ab initio computational chemistry has evolved dramatically. In particular, the development of 
multireference-based approaches has opened up a completely new area, and has had a profound impact on the 
potential of theoretical chemistry. Multireference-based perturbation theory (MRPT) is an extension of the 
closed-shell sin이e reference Maller-Plesset method, and has been successfully applied to many chemical and 
spectroscopic problems. MRPT has established itself as an efficient technique for treating nondynamical and 
dynamical correlations. Usually, a complete active space self-consistent field (CASSCF) wave function is 
chosen as a reference function of MRPT. However, CASSCF often generates too many configurations, and the 
size of the active space can outgrow the capacity of the present technology. Many attempts have been proposed 
to reduce the dimension of CASSCF and to widen the range of applications of MRPT. This review focuses on 
our recent development in MRPT.
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Introduction

Single reference many-body perturbation theory and coupled 
cluster theory are effective in describing dynamical correlation, 
but fail badly in dealing with (quasi-)degenerate nondynamical 
correlation. Truncated configuration interaction (CI) can 
handle nondynamical correlation well, but configuration 
expansion in multireference CI is quite lengthy and is not an 
optimal approach. Multireference techniques can handle 
nondynamical correlation well. Once the state-specific 
nondynamical correlation is removed, the rest is primarily 
composed of dynamical pair correlation and individual pair 
correlation, and can be described even by second-order 
perturbation theory. This is the basic idea of the multirefer­
ence-based perturbation theory (MRPT).

Multireference Moller-Plesset (MRMP)1-4 and quasi­
degenerate perturbation theory (MC-QDPT)5,6 have been 
successfully applied to many chemical and spectroscopic 
problems, and this approach has established itself as an 
efficient method for treating nondynamical and dynamical 
correlation effects. MRMP can handle any state, regardless 
of charge, spin, or symmetry, with surprisingly high and 
consistent accuracy. However, MRMP has a sharp limit to 
the number of configurations of the reference complete 
active space (CAS) SCF wave function.7-9 To avoid this 
problem, many approaches have been proposed. We have 
developed perturbation theory (PT) based on the quasi­
complete active space (QCAS) SCF wave function.10,11 
QCAS is defined as the product space of CAS spanned by 
the determinants or configuration state functions (CSFs). 
Although QCAS works quite well, QCAS requires physi­
cally sound judgment and intuition in the choice of 
subspace. More flexible reference functions are required. A 
second-order PT starting with general multiconfiguration
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(MC) SCF wave functions12 has been developed. The 
general MCSCF functions are wave functions optimized in 
an active space spanned by an arbitrary set of Slater deter­
minants or CSFs. The approach can dramatically reduce the 
dimension of the reference function. Recently, a very 
efficient string product space (SPS) SCF/PT has been 
proposed, where the total space is defined as a product of a 
and P string spaces.

This review will focus on our recent development in 
multireference-based perturbation theory.

Multireference Moller-Plesset Perturbation Method

Our basic problem is to find approximations to some low- 
lying solutions of the exact Schrodinger equation,

H中=EW. (1)

H is the Hamiltonian and it is decomposed into two parts, a 
zeroth-order Hamiltonian Ho and a perturbation V,

H = Ho+ V. (2)

We assume that a complete set of orthonormal eigenfunc­
tions {W(0)} and corresponding eigenvalues is available,

HoW0)= E(0)W(0). ⑶

Then the state wave function W is expanded in terms of 
basis functions ¥?) as

Wi = £ Cikwk0). (4)
k

Some of the basis functions define an active space P, and 
the remaining part of Hilbert space is called the orthogonal 
space Q = 1 - P. The active space is spanned by the basis 
functions that have a filled core and the remaining active 
electrons distributed over a set of active orbitals. The 
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orthogonal complete space incorporates all other possible 
basis functions that are characterized by having at least one 
vacancy in a core orbital. The state wave function in an 
active space is written as

斗矿)=£ C糾, (5)
k

where the sum runs over the active space basis functions 
{① i} and Ck are the coefficients of just the active space basis 
functions. It is convenient to use intermediate normalization, 
i. e.

〈中；。仲 I。)〉=〈中艸明〉=1. (6)

We also assume that 中件 is diagonal in P space,

〈中10)| H|中急〉=福(E»0) + E?)), ⑺

with
E0)=〈中艸 H° 圖0)〉， (8)

E(0)=〈中艸 V|旧°)). (9)

The state-specific Rayleigh-Schrodinger PT based on the 
unperturbed eigenvalue equation

H0 中I。)= E(0 %。) (10)

】r(k)leads to the first few EI as

eI ) =〈'吧 0)| VRV|中(0)), (11)

EI)=〈中 f)|VR (V - E(1)) RV |TI0)), (12)

E,)=〈中 f)|VR (V - E(1)) R( V - E")RV|明急)

-E(2)[〈中(0 }|VR2V |TI0)) +〈中(0)| VRH0 SH0RV阿o))]

, etc. (13)

R and S are the resolvent operators

R = Q/(E?)- H), (14)

S = P (E(0) - H), (15)

where P' = P-|中I。))〈中I。」.

E*0 is given in terms of orbital energies as

e( 0) = £ Dkk£k, (16)
k

and the orbital energies are defined as

£t =〈们FM) (17)

with

F = h + £ Dk{(ij\kl) 一 2(叫〕')], (18) 

where Dij is the one-electron density matrix. The MCSCF 
orbitals are resolved to make the F matrix as diagonal as 
possible. This zeroth-order Hamiltonian is closely analogous 
to the closed-shell Fock operator. The definition of an active 
space, the choices of active orbitals and the specification of 
the zeroth-order Hamiltonian completely determine the 
perturbation approximation.

When a CASSCF7-9 wave function is used as the 
reference, the zeroth plus first order energy E(o) + E?)is 
equal to the CASSCF energy. The lowest non-trivial order is 
therefore the second order. Let the reference function | 蜡)) 

be a CASSCF wave function,

|a) = £ Ca A) .
k

The energy up to the second order is given by 

(19)

(20)aVD〈I|V|a)
S + £

l
E广）=

where (|I)} is the set of all singly and doubly excited 
configurations from the reference configurations in CAS. 
This is our multireference Moller-Plesset (MRMP) method.1-4

We have also proposed a multistate multireference 
perturbation theory, the quasidegenerate perturbation theory 
with MCSCF reference functions (MC-QDPT).5,6

The Perturbation Theory Based on QCAS-SCF and 
MCSCF Wave Functions

CASSCF7-9 can handle the near-degeneracy problem in a 
balanced way and therefore can treat chemical reactions and 
excited states. Once the active space is chosen, the wave 
function is completely specified. It is size-consistent and the 
wave function is invariant to transformations among active 
orbitals. Although CASSCF does not include dynamical 
correlation, it provides a good starting point for such studies. 
However, CASSCF often generates too many configurations 
with the number of active orbitals and active electrons.

To reduce the CAS dimension, we have proposed the 
quasi-complete active space (QCAS) SCF method.10,11 
QCAS is an attempt to extend the method to widen the range 
of applications. QCAS is defined as a product of complete 
active spaces. Let us divide the active electrons and orbital 
sets into N subsets and fix the number of active electrons, mi, 
and orbitals, ni, in each subset,

mact = £ mi，nact = £ ni (21)
i i

where mact and nact denote the number of active electrons and 
active orbitals, respectively. We define the QCAS as the 
product space of CAS spanned by the determinants or CSF

QCAS({mi},{n}) = CAS(m1,m) x CAS(m2,n2)
x …x CAS"nN) (22)

Each active space is defined by a fixed number of active 
electrons and active orbitals. Solution of the CI eigenvalue 
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problem involves the 6 vector, which is given by

0 = £ HuCJ 
j

=£〔£ h1](I\E1] J + 2 £ (ij\kl )〈I| %Ek「&Ej\Cj

J〔 ij ijkl

(23)

Here, I and Eij are the CI basis functions and the group 
generators. We adopt Slater determinants rather than CSF 
and split a determinant into a and g strings of each group

I=卩a…【a席・心=此〉-lI^-ng (24)

Then we can decompose the one-body a and g coupling 
constants into the coupling constants for the strings of the 
groups as

〈I| EjJ = {I\Ea J +〈I| Eg J

<iaiEa;j)n初h n标+媚圖J)n初h n尊产 
=J 」H*G IaJa H IJ g j g H 1JH*G 输

QJ트 G) 
0 (otherwise)

(25)

Thus, the o-vector and the one- and two-particle density 
matrices are expressed by the coupling constants for the 
strings of the groups.

The dimension of QCAS is much smaller than that of CAS 
constructed from the same set of electrons and orbitals. Let 
us consider CAS(16e, 16o), where16 electrons are distributed 
among 16 orbitals. CAS(16e, 16o) is spanned by the 
165 636 900 determinants (with M = 0). If we divide the 
active electrons and orbitals into five groups: (4e, 4o) + (4e, 4o) + (4e, 4o) + (2e, 2o) + (2e, 2o), the dimension of QCAS 

is reduced to 746 496. Using QCAS as a reference function 
in the perturbation theory, we may therefore extend active 
electrons and orbitals beyond the limit of CAS. QCASSCF/ 
PT works quite well. However, it is not always possible to 
select an appropriate QCAS, depending on the molecular 
systems of interest. QCAS requires physically sound judgment 
and intuition in the choice of subspace.

Therefore, we have developed a second-order QDPT using 
a general multiconfiguration (MC) SCF wave function as a 
reference function (hereafter, GMC-QDPT).12 The general 
configuration space (GCS) is defined by a space that is 
spanned by an arbitrary set of Slater determinants or CSFs. 
The orbitals are partitioned into three categories as in the 
ordinary MCSCF method: the core orbitals are doubly 
occupied and the virtual orbitals are unoccupied in all the 
determinants/CSFs, while the active orbitals may be occupied 
or unoccupied. The reference wave functions used in the 
perturbation calculations are determined by MCSCF as a 
variational space:

|a〉= £ CA(a)\A). (26) 

The effective Hamiltonian up to the second order H打幻 of 
van Vleck perturbation theory with unitary normalization is 
given by

/ ET(0 -2)、
(Heff )AB

= Hab + 2[@羿归心이球)〉+ @羿冏心切球)〉]
(27)

with

Ra = £ |e(0)〉(EA°)- e")T@(0)| , (28)
I W ref

where ^A°)(^B，)) and oj0) are reference wave functions 
and a function in the complement space (O) of the reference 
space (P), respectively, and E；0 and Ej are zeroth-order 
energies of functions ①耿 and ①10).

Adopting (state-averaged) MCSCF wave functions a (g) 
as reference functions 矶)(①B"), which define the P space, 
Eq. (27) becomes

+ 2 £ [件H釦 ag)|, (29)
21 w gcs I Eg - Ej

where I is a determinant/CSF outside the GCS. The notation 
(ao g) means interchange a with g from the first term in 
curly brackets. The complementary eigenfunctions of the 
MCSCF Hamiltonian and the determinants/CSFs generated 
by exciting electrons out of the determinants/CSFs in GCS 
are orthogonal to the reference functions and define the Q 
space. The functions in the space complementary to the P space, however, do not appear in Eq. (29), because the 

interaction between the complementary functions and the 
reference functions is zero. We define here the correspond­
ing CAS (CCAS) as a CAS constructed from the same active 
electrons and orbitals, that is, the minimal CAS that includes 
the reference GCS.The summation over I in Eq. (29) may be divided into 

summations over the determinants/CSFs outside CCAS and 
over the determinants/CSFs outside the GCS but inside 
CCAS:

I 宅 GCS I 宅 CCAS I 宅 CCAS aW GCS ‘ '

then the former second-order term may be written as

(K幻)=£ 〈a|HI〉〈I| H|g〉
(Keff )ag £ 厂(0)厂(0)

IW CCAS Eg 一 E]

+ £ 이 HI〉〈I|H|g> .
I W CCAS aiw gcs Eg 一 E,0

(31)

The first term in Eq. (31) represents external excitations, and 
the second term represents internal excitations. The external 
term is calculated by the diagrammatic method and the 
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internal term by the sum-over-states method.
The external term may be further written as

았HX) 砂 = £ Ca (a)CB(/i)(HR)AB (32)
A, B e GCS

with 

B = I e£CAS
〈쇠 H卩〉〈』H\B] (33)

where (H(e2X^t)ab is the effective Hamiltonian in the 
determinant/CSFs. Because the second-order diagrams do 
not depend on the denominator, the second-order effective 
Hamiltonian, Eq. (33) (hence, also Eq. (32)) is expressed by 
the same diagrams as in the conventional QDPT.

For internal terms, the diagrammatic approach may not be 
applied. Instead, matrix operations for the Hamiltonian 
matrix are used:

(H闩)砂=vT(a) - w(p) (34)

with

V (a) = £ 〈I\ 끼A〉CA(a) (35)
A e GCS

Wj(P) = £ </\H\B)Cb(p)/(Ef - eB0)) (36)
B e GCS

The intermediate determinants/CSFs I are constructed by 
exciting one or two electrons from the reference deter­
minants/CSFs within the active orbital space. In general, the 
number of I is not large, and thus they may be managed in 
computer memory.

In the present implementation, we used Slater determinants 
rather than CSFs. Let {Ia} and {Ip} be sets of a and p strings 
appearing in the reference configurations, respectively. The 
reference space is defined by the p string sets for each a 
string, {Ip[Ia]}, and equivalently the a string sets for each p 
string, {Ia[Ip]}.

In the diagrammatic computation of the external terms, 
one-, two-, and three-body coupling coefficients are necessary. 
The one-body coupling coefficients are classified into two 
types,

(IdEaqVo^IpjP) and <IJja)<Ip\E^P)

the two-body coupling coefficients into three types,

〈시E；q사Ja)〈Ip\Jp), <Ia\Jo)<IP\E"rs\J) , and

〈시E%Ja)〈셰 Ep\J),

and the three-body coupling coefficients into four types,

〈*E；q,rs,tN0)〈編〉QcOJ〉QpEPq,rs,tu\J)，

〈시 E"\J〉UPEpuJP), and〈시E^OX^I^E.u\J) 

with J a e (Ia}, Jp e (Ip} , and

Epq,rs,... = 새pa새ra‘ … 새sa새qa , 

맨q,rs,... = 시pp 시邛…시sp 시qp

(37)

(38)

Because string Ja (Jp) is determined by string Ia (Ip) and 
active orbital labels p and q, the one-body coupling 
coefficients for strings〈妁 E；qJa)(〈세 EpqJp)) can be 
stored in the computer memory in the form J^Ia；P,q] 

(Jp[Jp；P,q]). The perturbation calculation for three-body 
coupling coefficients,〈妁E°q,rs J0)<If\다："、J), for example, 
is performed as follows:
Loop over Ia

Make all non-zero〈시 ^"点(〉for Ia

Loop over Ip [Ia]
Loop over t and u
If Jp[Ia；t,"]W 0 and JpUaJ,"] e (^p[[Ja\} , /n 
do 3-body PT calculations for (시 E°q,rs JB)<Ip\EtuJp) 

End loop t and u
End loop Ip [시

End loop Ia
The other terms can be computed similarly.

The one- and two-body coupling coefficients computed in 
the same manner are used for the CI-based calculation for 
the internal terms. The vectors 짛i in Eq. (34) are computed as 
o-vectors using strings.

A more efficient algorithm has been developed by using 
the a and p string spaces. Let us define the total space as a 
product of a and p string spaces. This method is called a 
string product space (SPS) SCF/PT method.13 Taking 
advantage of the independence of the a and p string spaces, 
the computational efforts can be dramatically reduced. For 
example, the perturbation calculation for three-body coupling 
coefficients, (I^ £匕,点 M】p\E^Jp), is simplified as follows: 
Loop over Ia

Make all non-zero〈시 ^"点(〉for Ia
Loop over Ip (=Jp)

do 3-body PT calculations for〈시 E^ JaXip 或卩&) 

End loop Ip
End loop Ia

Compared with the diagrammatic algorithm, the present 
scheme does not require loops over t and u. Usually, the a 
and p string spaces are spanned by the singly and doubly 
excited configurations, respectively. Thus, the total SPS 
consists of configurations up to quadruple excitations. The 
dimension of the reference function can be drastically 
reduced. The dimensions of CAS(14e, 14o) and CAS(18e, 
18o) are 11 778 624 and 2 363 904 400, respectively, while 
the corresponding dimensions of SPS(14e, 14o) and 
SPS(18e, 18o) are 241 081 and 1 898 884. Thus, we can 
handle PT based on the (18e, 18o) reference functions. A 
numerical illustration shows that SPS-PT can describe the 
double-bond breaking process and treat several potential 
energy curves simultaneously. The excited states are also 
calculated very accurately by SPS-PT.
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Conclusion

The convergence of the dynamical correlation is rather 
slow, and the accurate representation of the dynamical 
correlation requires high levels of excitations in the many­
electron wave function and high levels of polarization 
functions in a basis set. The situation is, however, quite 
different for nondynamical correlation. The nondynamical, 
near-degeneracy effect converges fairly smoothly with 
respect to both the one-electron basis function and the many­
electron wave function. This implies that the near degeneracy 
problem can be handled quite well even in a moderate 
function space. This supports the use of QCASSCF or 
MCSCF instead of CASSCF as a reference function in 
MRPT calculations. The QCAS and MCSCF methods are 
apparently quite poor when compared with the CASSCF, but 
the deficiency is largely overcome when the dynamical 
correlation is considered at the level of MRPT.

MRPT can handle any state, regardless of charge, spin, or 
symmetry with surprisingly high and consistent accuracy, 
supporting our use of this method as our ‘standard’ for 
treating small to medium-sized molecules.

As is well known, ab initio computational effort depends 
heavily on the system, N. This dependence is of order N4 for 
SCF and is of order N and higher for MRPT. The steep 
nonlinear cost of the conventional correlated methods has no 
physical origin; it is an artifact caused mainly by the use of 
canonical orbitals. Canonical orbitals, although conceptually 
and computationally convenient, destroy the local character 
of dynamical correlation. The development of alternative 
formulations based on local quantities is both feasible and 

desirable. The steep scaling can be reduced using local 
electron correlation methods. There has been continuing 
interest in local MRPT14 that uses the local character of the 
dynamical correlation. Research in this direction is now in 
progress.15
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