Studies on the Total Synthesis of Amphidinolide O. A Stereoselective Synthesis of C3-C11 Fragment

Jin-Hyun Pang, Young-Jin Ham, and Duck-Hyung Lee*
Deparment of Chemistry, Sogang Chiversity, Shinsoo-dong 1, Mapo-gu, Seoul 121-742, Korea
ReceivedMarch 25. 2003

Key Words : Amphidinolide O. Cytotoxic macrolide. Stereoselective synthesis. Diastereoselective sw-aldol reaction. 1.3-anti-Selective reduction of β-hy drony ketone

The amphidinolides were isolated from the marine dinoflagellate Amphidinium sp., and Amphidinolide O (1) displayed potent in vitro cytotoxicity against L1210 marine leukemia cells and human epidermoid carcinoma KB cells ($\mathrm{IC}_{\mathrm{Si}}: 1.7$ and $3.6 \mu \mathrm{~g} / \mathrm{mL}$, respectively). ${ }^{1}$ Until now. the total synthesis of amphidinolide $\mathrm{J},{ }^{2} \mathrm{~K},{ }^{3}$ and P^{+}were reported by Williams' group, and many synthetic studies for amphidinolide $\mathrm{A},{ }^{5} \mathrm{~B} .{ }^{6} \mathrm{C}^{7}{ }^{7} \mathrm{G} .{ }^{8} \mathrm{H}^{8}$ and $\mathrm{L}^{8,9}$ have been published. Recently, the synthesis of $\mathrm{Cl} 2-\mathrm{Cl} 7$ fragment 3 of amphidinolide O (1) was reported in this laboratory ${ }^{111}$ and we describe herein the diastereoselective synthesis of the other $\mathrm{C} 3-\mathrm{Cll}$ fragment 20 of amphidinolide $\mathrm{O}(\mathbf{1})$.

The retrosynthetic analysis of amphidinolide O (1) led to the $\mathrm{Cl}-\mathrm{Cll}$ fragment 2 and C 12 Cl 7 fragment 3 through cleavage of $\mathrm{Cl}-\mathrm{O}$ and $\mathrm{Cll-Cl} 2$ bond (Scheme 1) as proposed in the our paper. ${ }^{10}$ The hemiketal moiety of fragment 2 was expected from the Weinreb amide 4 , and the coupling reaction of an aldehyde 5 and vinyl organometallic compound 6 would provide the Weinreb amide 4 . The amide 5 should be easily available via Evans asymmetric sy-aldol protocol.
First. Evans oxazolidinone 7 was treated successively with

Scheme 1. Retrosynthetic Analysis of Amphidinolide O (1).
${ }^{\circ}$ Corresponding author. E-mail: dhlee'aces.sogang.ac k
$n-\mathrm{BuLi}$ (1.05 equiv.) and propionyl chloride (1.3 equiv.) to afford the carboximide 8 in 85% yield (Scheme 2). ${ }^{11}$ Enolization of 8 with TiCl_{4} (1.05 equiv.) and Hunig's base (1.15 equiv.) was followed by reaction with the aldehyde 9 to provide the $s m$-aldol product $\mathbf{1 0}$ with high diastereoselectivity ($>97: 3$ by NMR analysis). ${ }^{12}$ The aldelyde 9 was prepared in two steps from 1.3-propanediol wia selective protection of one primary alcohol with p-methoxybenzyl clloride and Swenn oxidation of the remaining primary alcohol. ${ }^{13}$ The syn-aldol product $\mathbf{1 0}$ was successively treated with N, O-dimethyllyydroxylamine hydrochloride (5.0 equiv.) and $\mathrm{Al}(\mathrm{Me})_{3}$ (5.0 equiv:) to give the Weinreb amide 11 in 90% yield. ${ }^{14}$ Purification of $\mathbf{1 1}$ was facilitated by efficient crystallization of the recyclable oxazolidinone auxiliary 7 ($80-90 \%$) from the reaction misture. The hydroxyl group of 11 was then treated with TBSOTf (1.2 equiv.) and 2,6 lutidine (2.0 equiv.) to provide the TBS ether 12 in 92% yield ${ }^{15}$ and the PMB group of 12 was deprotected with 10% $\mathrm{Pd}-\mathrm{C}$ in ethyl acetate and ethanol at room temperature in 88% yield. ${ }^{16}$ And the primary alcohol 13 was oxidized by Swern protocol into the aldehyde 14 in 85% yield. ${ }^{17}$

Next, the vinyl stamane 15 was prepared from 3-butyn-1-

Scheme 2. Synthesis of Cl-Cll fragment of amphidinolide O . (a) n - $\mathrm{BuLi}_{2} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 85 \%$; (b) TiCl_{4}, i $\mathrm{Pr}_{2} \mathrm{NEt}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}: 9, \mathrm{CH}_{2} \mathrm{Cl},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $-40^{\circ} \mathrm{C}, 1 \mathrm{~h}, 70 \%$ (c) $\mathrm{HN}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}-\mathrm{HCl}, \mathrm{AlMe}_{3}$, THF, rt, $5 \mathrm{~h}, 90 \%$: (d) TBSOTf, 2,6lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 92 \%$; (e) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc} /$ $\mathrm{EtOH}(\mathrm{I}: 1) \mathrm{rt}, 12 \mathrm{~h}, 88 \%$ (f) (COCl)$)_{2}$, DMSO, TEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2,},-78$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$.

Scheme 3. Synthesis of Tin Reagent 15 . (a) $\mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}, 30$ min! $\mathrm{PMBCl}, \mathrm{rt}, \mathrm{I} \mathrm{d}, 70 \%$ (b) (m - Bu$)_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, $130^{\circ} \mathrm{C}$, $2 \mathrm{~h}, 70 \%$.
ol in two step sequences (Scheme 3): PMB protection of alcohol with p-methoxybenzyl chloride (1.0 equiv.) in $\mathrm{DMF}^{18 \mathrm{a}}$ and hydrostannylation of the alkyne moiety with $n-$ tributyltin hydride (1.5 equiv.) in the presence of a catalytic amount of AIBN. ${ }^{186}$
And the vinyl stannane $\mathbf{1 5}$ was lithiated with $n-\mathrm{BuLi}$ (1.5 equiv.) at $-40^{\circ} \mathrm{C}$ for 1 h and the resulting lithium reagent was added to the aldehyde $\mathbf{1 4}$ to furnish the diastereomeric mixtures of secondary alcohols 16 in 70% yield (Scheme 4). ${ }^{19}$ The alcohols 16 were oxidized with Dess-Martin periodinane (1.3 equiv.) to give the ketone 17 in 84% yield ${ }^{3(0)}$ while oxidation of 16 with PCC or PDC resulted in significant isomerization at the α-chiral center. Desilylation of the ketone 17 was achieved by 48% aqueous HF in acetonitrile ($5: 95 \mathrm{v} / \mathrm{v}$) at $0^{\circ} \mathrm{C}$. leading to β-hydroxy ketone 18 in 65% yield. A hydroxyl group-directed 1.3 -antireduction of 18 with $\mathrm{NaBH}(\mathrm{OAc})_{3}$ (1.5 equiv.) provided the 1,3 -anti-diol 19 in 72% yield with moderate 1.3 -stereoselectivity ($84: 16$) ${ }^{21}$ The diol 19 was then treated with 2,2 dimethoxypropane (10.0 equiv.) in the presence of a catalytic amount of PPTS to give the acetonide 20 in 65% yield.

Scheme 4 . Synthesis of C 3 -Cll fragment of amphidinolide O . (a) $n-\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}, 20 \mathrm{~min}$, then $-40^{\circ} \mathrm{C}, 40 \mathrm{~min}:(\mathrm{E})-\mathrm{Bu} 3_{3} \mathrm{SnCH}$ $=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OPMB}(15), 70 \%$; (b) $\mathrm{DMP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 12 \mathrm{~h}, 84 \%$; (c) 48% aq. $\mathrm{HF} / \mathrm{MeCN}(5: 95), 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 65 \%$; (d) $\mathrm{NaBH}(\mathrm{OAc})_{5}$, EtOAc, rt, $12 \mathrm{~h}, 72 \%$ (e) $\mathrm{Me} \mathrm{C}(\mathrm{OMe})$), $\mathrm{PPTS}, \mathrm{CH}_{2} \mathrm{Cl}$, , it, $12 \mathrm{~h}, 65 \%$.

$\mathrm{R}^{1}=-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CON}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}_{3}$
$\mathrm{R}^{2}=-\mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OPMB}$
Scheme 5. Determination of relative stereochemistry of 1,3-anti acetonide 20 .

The relative stereochemistries of 1,3-anti diol 19 and the acetonide $\mathbf{2 0}$ were determined unambiguously from ${ }^{1} \mathrm{H} \mathrm{NOE}$ difference spectroscopy of the acetonide $\mathbf{2 0}$. As shown in Scheme 5 . NOSEY correlations were observed between C_{5} axial H and C_{6} equatorial $\mathrm{H}(5.19 \%), \mathrm{C}_{6}$-axial H and $\mathrm{C}_{7}-$ equatorial $\mathrm{H}(4.03 \%)$. and C_{5}-coxial H and caxial methyl group (5.86%), which confirm the anti relationship between $\mathrm{C}_{5}-\mathrm{H}$ and $\mathrm{C}_{7}-\mathrm{H}$.

In summary. Weinreb amide 20. the C3-Cl1 fragment of Amphidinolide O (1), was prepared stereoselectively wia 11 step sequences in 4.0% overall yield.

Acknowledgement. This research was assisted financially by Korea Science and Engineering Foundation (R01-2000-000-00048-0).

References

1. Ishibashi. M.: Takahashi. M.: Kobayashi. T. J. Org. Chent. 1995. $60.6022-6066$.
2. Williams. D. R.: Kissel. W. S. J. Am. Chent. Soc. 1998, 120. 11198-11199.
3. Williams. D. R.: Meyer. K. G. In Abstracts of Papers. 218th National Meeting of the American Chemical Society: American Chemical Society: Washington. DC. 1999: ORGN-578.
4. Williams. D. R.; Myers, B. J.; Mi, L. Org. Lett. 2000. 2. 945-948.
5. (a) Hollingworth. G. J.; Pattenden, G. Tetrahedron Letl. 1998. 39. 703-706. (b) Terrell. L. R:; Ward III, J. S.; Maleczka Jr, R. E. Tetrahedron Lett. 1999. 40. 3097-3100.
6. (a) Lee. D. H.: Lee. S. W. Tetrahedron Lett. 1997. 38. $7909-7910$. (b) Lee. D. H.: Rho. M. D. Terrahedron Lell. 2000. +1. 2573-2576 and references therein.
7. Ishiyama. H.; Ishibashi. M:; Kobayashi. J. Chen. Pham. Bull. 1996. 44, 1819-1822.
8. (a) Chakrabonty. T. K.: Suresh. V. R. Terrahedron Lett. 1998. 39. 9109-9112. (b) Chakraborty. T. K.: Suresh. V. R. Tetrahe dron Lett. 1998. 39.7775-7778.
9. Kobayashi. J.: Hatakevama, A.; Tsuda. M. Terrohedron 1998, 54. 697-704.
10. Pang, J. H.: Lee, D. H. Bull. Konew Chem Soc. 2002, 23. 1173-1176.
11. Evans. D. A.: Ennis. M. D.: Mather. D. T. J. Am. Chem. Soc. 1982. 104. 1737-1739.
12. (a) Mapp. A. K.: Heathock. C. H. J. Org. Chen. 1999.64. 23-27. (b) Evans, D. A.; Kaldor. S. W.: Jones. T. K.; Cardy J.; Stout, T. J. J. Am. Chent. Soc. 1990, 112. 7001-7031.
13. (a) Rorig. K.: Johnston. D.: Hamilton, R.: Telinski. T. J. Org. Synth. Coll. Iol. II: 1963. 576-579. (b) Urbanek. R. A.: Sabes. S. F.: Forsyth. C. J. J. Am. Chem. Soc. 1998. 120. 2523-2533.

14. Jones. I. K.: Reamer. R. A.: Desmond. R.: Mills. S. G. J. Am. Chem. Soc. 1990. 112. 2998-3017.
15. Corey. E. T.: Cho. H.: Rücker. C.: Hua. D. H. Tetrahedrom Lett. 1981. 22, 3455-3458.
16. Horita. K.: Yoshioka. T.; Tanaka, T.: Oikawa Y.; Yonemitsu, 0 . Tetrahedron 1986. 42, 3021-3028.
17. Mancuso. A. J.: Swern. D. Synthesis 1981. 165-196.
18. (a) Urbanek. R. A.: Sabes. S. F.: Forsyth. C. J. J. Am. Chem. Soc. 1998. 120. 2523-2533. (b) Chen. S-M. L.: Schaub. R. E.: Grudzinskas. C. V. J. Org Chem. 1978. $43,3450-3454$.
19. Nicolaou. K. C.: Webber, S. E. Sphthesis 1986, $453-462$.
20. Dess. D. B.; Matin, J. C. J. Org Chem. 1983. 48, $4155-4156$.
21. Sksena. A. K.: Mangiaracina. P. Tetrahedron Lett. 1983. 24. 273-276.
