DOI QR코드

DOI QR Code

Interrelation of Retention Factor of Amino-Acids by QSPR and Linear Regression

  • Lee, Seung-Ki (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng., Inha University) ;
  • Polyakova, Yulia (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng., Inha University) ;
  • Row, Kyung-Ho (Center for Advanced Bioseparation Technology and Dept. of Chem. Eng., Inha University)
  • Published : 2003.12.20

Abstract

The interrelation between retention factors of several L-amino acids and their physico-chemical and structural properties can be determined in chromatographic research. In this paper we describe a predictor for retention factors with various properties of the L-amino acids. Eighteen L-amino acids are included in this study, and retention factors are measured experimentally by RP-HPLC. Binding energy ($E_b$), hydrophobicity (log P), molecular refractivity (MR), polarizability (${\alpha}$), total energy ($E_t$), water solubility (log S), connectivity index (${\chi}$) of different orders and Wiener index (w) are theoretically calculated. Relationships between these properties and retention factors are established, and their predictive and interpretive ability are evaluated. The equation of the relationship between retention factors and various descriptors of L-amino acids is suggested as linear and multiple linear form, and the correlation coefficients estimated are relatively higher than 0.90.

Keywords

References

  1. Hansch, C.; Leo A. Exploring QSAR-Fundamentals and Applications in Chemistry and Biology; American Chemical Society: Washington, DC, 1995.
  2. Hansch, C.; Leo, A.; Hoekman, D. Exploring QSAR- Hydrophobic, Electronic, and Steric Constants; American Chemical Society: Washington, DC, 1995.
  3. Wang, Y. H.; Wong, P. K. Chemosphere 2003, 50, 499. https://doi.org/10.1016/S0045-6535(02)00491-5
  4. Ferreira, M. M. C. Chemosphere 2001, 44, 125. https://doi.org/10.1016/S0045-6535(00)00275-7
  5. Dai, J.; Jin, L.; Yao, S.; Wang, L. Chemosphere 2001, 42, 899. https://doi.org/10.1016/S0045-6535(00)00181-8
  6. de Mello Castanho Amboni, R. D.; da Silva Junkes, B.; Yunes, R. A.; Heinzen, V. E. F. Theochem. 2002, 586, 71. https://doi.org/10.1016/S0166-1280(02)00062-3
  7. Golovanov, I. B.; Tsygankova, I. G. Quant. Struct.-Act. Relat. 2000, 19, 554. https://doi.org/10.1002/1521-3838(200012)19:6<554::AID-QSAR554>3.0.CO;2-A
  8. Barbosa de Oliveira, D.; Coser Gaudio, A. Quant. Struct.-Act. Relat. 2000, 19, 599. https://doi.org/10.1002/1521-3838(200012)19:6<599::AID-QSAR599>3.0.CO;2-B
  9. Dorsey, J. G.; Khaledi, M. G. J. Chromatogr. A 1993, 656, 1485.
  10. Lambert, W. J. J. Chromatogr. A 1993, 656, 469. https://doi.org/10.1016/0021-9673(93)80814-O
  11. Braumann, T. J. Chromatogr. A 1986, 373, 191. https://doi.org/10.1016/S0021-9673(00)80213-7
  12. Tatjana, D. S.; Marijana, A.; Acanski, P. J. J. Chromatogr. B 2001, 766, 67.
  13. Martin-Biosca, Y.; Molero-Monfort, M.; Sandaro, S. Quant. Struct.-Act. Relat. 2000, 19, 247. https://doi.org/10.1002/1521-3838(200006)19:3<247::AID-QSAR247>3.0.CO;2-6
  14. ChemSW, Molecular Modeling Pro for Windows; USA, CA 94585-4019.
  15. Dewar, M. J. S.; Helay, E. J. J. Comput. Chem. 1983, 4, 158. https://doi.org/10.1002/jcc.540040207
  16. Dewar, M. J. S.; Helay, E. J.; Stewart, J. J. Comput. Chem. 1988, 5, 358. https://doi.org/10.1002/jcc.540050413
  17. Kier, L. B.; Hall, L. H. Molecular Connectivity in Structure Activity Analysis; Research Studies Press: Letchworth, England, 1986.
  18. Brukert, U.; Allinger, N. L. Molecular Mechanics; ACS Monograph, American Chemical Society: Washington, 1982.
  19. Le Fevre, R. J. W. Molecular Refractivity and Polarizability, in Advances in Physical Organic; Academic Press: London and New York, 1965.
  20. Hansch, C.; Leo, A. Substituent Constants for Correlation Analysis in Chemistry and Biology; Wiley: New York, 1979.
  21. Gold, V. Chemistry; Academic Press: London and New York, 1965; Vol. 3.
  22. Schapira, M.; Totrov, M.; Abagyan, R. J. Mol. Recognit. 1999, 12, 177. https://doi.org/10.1002/(SICI)1099-1352(199905/06)12:3<177::AID-JMR451>3.0.CO;2-Z
  23. Kier, L. B.; Hall, L. H. Quant. Struct.-Act. Relat. 1989, 10, 134. https://doi.org/10.1002/qsar.19910100208
  24. Baryz, M.; Jashari, G.; Lall, R. S.; Srivastava, V. K.; Trinajistic, N. Chemical Application of Topology and Graph Theory; Elsevier Science Publisher B. V.: Amsterdam, 1983.
  25. Randyc, M. J. Am. Chem. Soc. 1975, 97, 6609. https://doi.org/10.1021/ja00856a001
  26. Wiener, H. J. Am. Chem. Soc. 1947, 69, 17. https://doi.org/10.1021/ja01193a005

Cited by

  1. Linear Regression Based QSPR Models for the Prediction of the Retention Mechanism of Some Nitrogen Containing Heterocycles vol.29, pp.4, 2006, https://doi.org/10.1080/10826070500479062
  2. Prediction of Retention of Nucleic Compounds Based on a QSPR Model vol.64, pp.3-4, 2006, https://doi.org/10.1365/s10337-006-0840-8
  3. Normal- and Reversed-Phase Behaviour of 16,17-Secoestrone Derivatives on Cyanopropyl-Bonded Silica Gel vol.70, pp.11-12, 2009, https://doi.org/10.1365/s10337-009-1367-6
  4. Correlation Equation for Retention Factor and Resolution of Ibuprofen in SFC vol.25, pp.12, 2003, https://doi.org/10.5012/bkcs.2004.25.12.1807
  5. Linear Correlation Equation for Retention Factor of Nucleic Acid Using QSPR vol.26, pp.4, 2005, https://doi.org/10.5012/bkcs.2005.26.4.629
  6. Gas-phase formation of large neutral alkaline-earth metal tryptophan complexes vol.19, pp.7, 2003, https://doi.org/10.1016/j.jasms.2008.04.028
  7. DETERMINATION OF NEW GENERATION PESTICIDES IN COMPLEX PLANT MATRICES BY HPLC USING VARIOUS STATIONARY PHASES vol.33, pp.2, 2003, https://doi.org/10.1080/10826070903442246
  8. Using linear solvation energy relationship model to study the retention factor of solute in liquid chromatography vol.25, pp.12, 2003, https://doi.org/10.1002/poc.3027