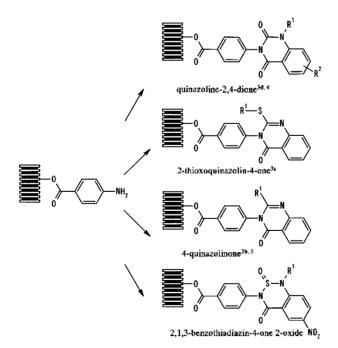
Notes


Efficient Solid-phase Synthesis of 2,1,3-Benzothiadiazin-4-one 2-Oxides with SynPhaseTM Lanterns

Shingo Makino,* Eiji Nakanishi, and Takashi Tsuji

Pharmaceutical Research Laboratories, Ajinomoto Co., Inc. 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi 210-8681, Japan Received October 9, 2002

Key Words : Solid-phase synthesis, Combinatorial chemistry, Heterocyle, S_NAr, 2,1,3-Benzothiadiazin-4one 2-oxide

Combinatorial chemistry for the synthesis of non-peptide organic compounds has emerged as an important tool for drug discovery.¹ Solid-phase synthesis of substituted heterocyclic compounds in particular has been a focus of recent investigations with application toward a variety of drug targets.² As a part of our project to develop efficient synthetic methods for heterocyles.³ we have investigated the solid-phase synthesis of 2.1.3-benzothiadiazin-4-one 2-oxides as they are similar to other important heterocycles such as quinazoline-2.4-diones.^{3d,4} 2-thioxoquinazolin-4-ones.^{3a,3e} 4-quinazolinones.^{3b,5} 1.2.4-benzothiadiazine 1.1-dioxide.^{3f} benzimidazole.⁶ hydantoin.⁷ 2-piperazinone⁸ Since these heterocycles have been prepared from solid-supported primary

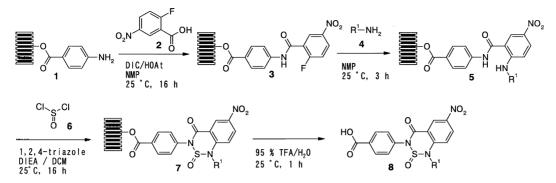


Figure 1. Examples of heterocycles that have been synthesized on SynPhaseTM Lantern.

amines including nitrogen atoms as parts of the heterocycles. they can easily be compared to bioactivities of 2.1.3-benzothiadiazin-4-one 2-oxides by developing the appropriate solid-phase chemistry (Figure 1). Nevertheless, to the best of our knowledge, there has been only one report of the synthesis of 2,1,3-benzothiadiazin-4-one 2-oxides in solutionphase.⁹ 2,1,3-Benzothiadiazin-4-one 2-oxides were synthesized by reacting 2-(alkylamino)benzamides with conc. thionylchloride under reflux in the previous report; however, this reaction is not suitable for our solid-phase synthesis as the compounds on solid-support would be cleaved under such acidic condition. Thus, investigation was required for thionylation on solid-support. In addition, preparation of diverse 2-(alkylamino)benzamide was difficult with the reported method; therefore, we decided to prepare 2-(alkylamino)benzamides from 2-fluoro-5-nitrobenzamides through S_NAr reaction. The key building block, 2-fluoro-5-nitrobenzoic acid, was successfully applied to the solid-phase synthesis of various heterocycles, such as benzimidazoles.¹⁰ benzopiperazinones,¹¹ macrocycles,¹² 1,4-benzothiazepin-5-ones,¹³ quinazoline-2,4-diones.3d 2-thioxoquinazolin-4-ones.3c Here. we report the solid-phase synthesis of 2,1,3-benzothiadiazin-4-one 2-oxides.

SynPhaseTM Lantern¹⁴ bearing 4-aminobenzoic acid ester 1 was prepared as previously described.^{3a} Then, 1 was reacted with 2-fluoro-5-nitrobenzoic acid 2 activated with N.N'diisopropylcarbodiimide (DIC)/1-hydroxy-7-azabenzotriazole (HOAt). Preactivation of 2 is important to prevent solid-supported amine 1 from reacting with 2 or DIC, S_NAr type reaction was performed by treating 3 with various primary amines 4 to give 5 with high purity. Next, evelization of 5 was attempted using thionylchloride 6. Although various reaction conditions such as the base (diisopropylethylamine (DIEA), pyridine, 2.6-lutidine, 2.4.6-collidine), solvents (dichloromethane {DCM}, THF, 1,4-dioxane) and reaction temperature (0-25 °C) were examined, 7 was obtained together with unknown byproducts. Therefore, thionylchloride was converted into more stable reagents with several additives (tetrazole, 1.2,4-triazole, imidazole) prior to the addition to the Lantern, and the treatment of 5 with thionylchloride/ 1.2.4-triazole/DIEA/DCM was found to give 2.1.3-benzo-

^{*}Corresponding author. Phone: +81-44-210-5826: Fax: +81-44-210-5876; E-mail: shingo_makino@ajinomoto.com

Scheme 1. Synthetic scheme for 2.1.3-Benzothiadiazin-4-one 2-oxides.

thiadiazin-4-one 2-oxides **8** in high purity. (Table 1, Entry ah). In addition, various solid-supported arylamines prepared from the corresponding nitrobenzenes were derivatized by the same procedure to give 2,1,3-benzothiadiazin-4-one 2oxides in high purity (Entry i-1), showing the procedure is suitable for an array of compounds. Furthermore, the nitro group at the 6-position of 2,1,3-benzothiadiazin-4-one 2oxides was successfully reduced with SnCl₂·2H₂O/EtOH/ NMP to offer the additional diversity point.¹⁶

In conclusion, the solid-phase synthesis of 2,1,3-benzothiadiazin-4-one 2-oxides has been successfully achieved for the first time. Various 2,1,3-benzothiadiazin-4-one 2-oxides can be synthesized with high purity. In addition, bioactivities of 2,1,3-benzothiadiazin-4-one 2-oxides can be efficiently compared with those of other important pharmacophores as described above.

General procedure for preparation of 4-(2-oxido-4-oxo-1-propyl-1,4-dibydro-3H-2,1,3-benzothiadiazin-3-yl)benzoic acid (8a). SynPhaseTM lantern (SP-PS-D-HMP, loading 35 μ mol/lantern) bearing the 4-aminobenzoic acid ester was put

 Table 1. Synthesis of 2.1.3-Benzothiadiazin-4-one 2-oxides using various amines 4 and several derivatized Lanterns

Entry	Solid-supported amine 1	amine 4	8 purity" yield ^b	
			а	4-aminobenzoic acid
b	4-aminobenzoic acid	allylamine	>95	82
с	4-aminobenzoic acid	isobutylamine	>95	73
d	4-aminobenzoic acid	cyclopropylamine	>95	93
e	4-aminobenzoic acid	eyelobutylamine	>95	96
ť	4-aminobenzoic acid	cyclohexanemethylamine	>95	87
g	4-aminobenzoic acid	4-phenylbutylamine	>95	91
h	4-aminobenzoic acid	piperonylamine	>95	72
i	3-aminobenzoic acid	n-propylamine	>95	79
j	2-aminocinnamic acid	n-propylamine	>95	87
k	3-aminocinnamic acid	n-propylamine	91	99
1	4-aminocinnamic acid		83	97

"Reverse-phase HPLC was carried out using water/acetonitrile (0.04% TFA) linear gradients from 5% to 98% organic component over 5 min. Flow rate: 2 mL/min. Column: Waters Symmetry C₁₈ (3.5 mm) 4.6 × 50 mm. HPLC purities were determined by summation of integrated HPLC peak areas at (210–3N) nm, N = 0-30. ^bCrude yields based on the theoretical loading weight of target molecules.

into 2.5-mL syringe. After 2-fluoro-5-nitrobenzoic acid (1.0 mmol) was activated with DIC/HOAt / NMP (0.5 mmol/1.0 mmol/2 mL) at 25 °C for 1 h, this solution was added to the syringe. After shaking the syringe for 16 h, the resin was washed with dry DMF ($2 \text{ mL} \times 3$) and dry DCM ($2 \text{ mL} \times 3$), and dried under a vacuum for 1 h. After isopropylamine/ NMP (200 mL/1.0 mL) was added, the syringe was shaken for 3 h and the resin was washed with DMF (2 mL \times 3) and DCM (2 mL \times 3). Then, the mixture of thionyl chloride/ triazole/DIEA/DCM (80 uL/250 mg/400 uL/1 mL) was added to the syringe, and the syringe was shaken for 16 h. After washing the resin with DCM (2 mL \times 2), DMF (2 mL \times 3) and DCM (2 mL \times 3), the resin was dried under a vacuum for 3 h. The resin was treated with 95% TFA/H2O for 1 h and the filtrate was concentrated with Genevac evaporator. The residue was dissolved with 50% CH₃CN/ H₂O and lyophilized to give the crude product.

(11.7 mg, yield 86%) ¹U NMR (Varian VXR-300S, 300 MHz, DMSO- d_6) δ 8.85 (d, J = 2.7 Hz, 111), 8.57 (dd, J = 9.2, 2.7 Hz, 111), 8.13 (dt, J = 8.7, 2.1 Hz, 211), 7.72 (d, J = 9.2 Hz, 111), 7.60 (dt, J = 8.7, 2.1 Hz, 211), 4.28 (dt, J = 14.7, 6.3 Hz, 111), 4.0 (dt, J = 14.7, 7.7 Hz, 111), 1.80-1.71 (m, 211), 0.95(t, J = 7.3 Hz, 311). ESIMS *m/z* 390 [MH]⁺.

4-(1-AllyI-2-oxido-4-oxo-1,4-dihydro-3H-2,1,3-benzothiadiazin-3-yI)benzoic acid (8b). Prepared as described above, using allylamine. (11.1 mg, yield 82%) ¹H NMR (DMSO- d_6) δ 8.45 (d, J – 3.0 Hz, 111), 8.59 (dd, J – 3.0, 9.0 Hz, 111), 8.15 (dt, J – 8.7 Hz, 2.1, 2H), 7.63 (dt, J – 8.7, 2.1 Hz, 2H), 7.59 (d, J – 9.0 Hz, 1H), 6.56 (d, J – 6.6 Hz, 1H), 6.09-5.98 (m, 1H), 5.44 (dd, J – 16.2, 2.8 Hz, 1H), 5.35 (dd, J – 11.7, 2.8 Hz, 1H), 4.94-4.76 (m, 2H). ESIMS *m/z* 388 [MH]⁻.

4-(1-Isobutyl-2-oxido-4-oxo-1,4-dihydro-3H-2,1,3-benzo-thiadiazin-3-yl)benzoic acid (8c). Prepared as described above, using isobutylamine. (10.3 mg, yield 73%) ¹H NMR (DMSO- d_6) δ 8.86 (d, J = 2.7 Hz, 111), 8.56 (dd, J = 9.3, 2.7 Hz, 111), 8.14 (dt, J = 8.7, 2.1 Hz, 2H), 7.77 (d, J = 9.6 Hz, 111), 7.58 (dt, J = 8.7, 2.1 Hz, 211), 4.29 (dd, J = 14.9, 5.0 Hz, 111), 3.75 (dd, J = 14.9, 9.6 Hz, 111), 2.18-1.94 (m, 1H), 1.00 (d, J = 6.6 Hz, 311), 0.91 (d, J = 6.9 Hz, 311). ESIMS m/z 404 [MH]⁻.

4-(1-Cyclopropyl-2-oxido-4-oxo-1,4-dihydro-3H-2,1,3benzothiadiazin-3-yl)benzoic acid (8d). Prepared as described above, using cyclopropylamine. (12.6 mg, yield 93%) ¹H NMR (DMSO- d_6) δ 8.82 (d, J = 3.0 Hz, 1H), 8.66 (dd, J = 9.0, 3.0 Hz, 1H), 8.12 (dt, J = 8.7, 2.1 Hz, 2H), 7.91 (d, J = 9.0 Hz, 1H), 7.63 (dt, J = 8.7, 2.1 Hz, 2H), 3.29-3.21 (m, 1H), 1.34-1.20 (m, 3H), 0.86-0.79 (m, 1H), ESIMS *m*:*z* 388 [MH]⁺.

4-(1-Cyclobutyl-2-oxido-4-oxo-1,4-dihydro-3H-2,1,3-benzothiadiazin-3-yl)benzoic acid (8e). Prepared as described above, using cyclobutylamine. (13.5 mg, yield 96%) ¹H NMR (DMSO- d_6) δ 8.83 (d, J = 2.9 Hz, 1H). 8.56 (dd, J = 9.3, 2.9 Hz, 1H), 8.13 (dt, J = 8.7, 2.1 Hz, 2H), 7.64 (dt, J = 8.7, 2.1 Hz, 2H), 7.55 (d, J = 9.3 Hz, 1H), 4.66 (tt, J = 8.0 Hz, 1H), 2.61-2.19 (m, 4H), 1.95-1.86 (m, 2H). ESIMS *m* z 402 [MH]⁺.

4-[1-(Cyclohexylmethyl)-2-oxido-4-oxo-1,4-dihydro-3H-2,1,3-benzothiadiazin-3-yl]benzoic acid (8f). Prepared as described above, using cyclohexanemethylamine. (13.5 mg, yield 87%) ¹H NMR (DMSO- d_6) δ 8.85 (d. J = 2.7 Hz, 1H), 8.57 (dd, J = 9.2, 2.7 Hz, 1H). 8.14 (dt. J = 8.6, 2.1 Hz, 2H), 7.76 (d. J = 9.2 Hz, 1H). 7.57 (dt, J = 8.6, 2.1 Hz, 2H), 4.27 (dd, J = 15.1, 4.5 Hz, 1H), 3.82 (dd, J = 15.1, 9.1 Hz, 1H), 1.84-1.58 (m, 6H), 1.28-0.94 (m, 5H). ESIMS *m*:*z* 444 [MH]⁴.

4-[2-Oxido-4-oxo-1-(4-phenylbutyl)-1,4-dihydro-3H-2, 1,3-benzothiadiazin-3-yl]benzoic acid (8g). Prepared as described above, using 4-phenylbutylamine, (15.3 mg, yield 91%) ¹H NMR (DMSO- d_6) δ 8.84 (d. J = 3.0 Hz, 1H), 8.56 (dd, J = 9.1, 2.5 Hz, 1H), 8.11 (dt, J = 6.9, 2.0 Hz, 2H), 7.69 (d. J = 9.6 Hz,1H), 7.62 (dt, J = 8.7, 2.0 Hz, 1H), 7.54 (dt, J= 8.7, 2.0 Hz, 2H), 7.23 (d. J = 6.9 Hz, 2H), 7.17-7.13 (m. 2H), 4.37-4.27 (m, 2H), 4.15-4.05 (m, 1H), 2.65-2.58 (m, 2H), 1.79-1.59 (m, 4H), ESIMS m z 480 [MH]⁴.

4-[1-(1,3-Benzodioxol-5-ylmethyl)-2-oxido-4-oxo-1,4dihydro-3H-2,1,3-benzothiadiazin-3-yl]benzoic acid (8b). Prepared as described above, using piperonylamine. (12.1 mg, yield 72%) ¹H NMR (DMSO- d_8) δ 8.83 (d, J = 2.8 Hz, 1H). 8.53 (dd, J = 9.1, 2.8 Hz, 1H). 8.14 (dt, J = 8.4, 2.2 Hz, 2H). 7.66-7.56 (m, 3H). 7.04 (d, J = 1.5 Hz, 1H), 6.98-6.90 (m, 2H). 6.56 (dt, J = 9.0, 2.2 Hz, 1H). 6.01 (dd, J = 0.9, 3.3 Hz, 2H). 5.32 (s, 2H). ESIMS m = 2.482 [MH]⁺.

3-(2-Oxido-4-oxo-1-propyl-1,4-dihydro-3H-2,1,3-benzothiadiazin-3-yl)benzoic acid (8i). Prepared as described above, using 3-aminobenzoic acid. (10.8 mg, yield 79%) ¹H NMR (DMSO- d_6) δ 8.85 (d, J = 3.0 Hz, 1H). 8.57 (dd, J = 9.3, 2.7 Hz, 1H). 8.12-8.08 (m. 1H). 7.98-7.96 (m. 1H), 7.74-7.70 (m. 3H), 4.27 (dt, J = 14.7, 7.5 Hz, 1H). 4.01 (dt, J= 14.7, 7.5 Hz, 1H), 1.83-1.72 (m, 2H), 0.96 (t, J = 7.5 Hz, 3H). ESIMS *m*:*z* 390 [MH]⁺.

(2E)-3-[2-(2-Oxido-4-oxo-1-propyl-1,4-dihydro-3H-2,1, 3-benzothiadiazin-3-yl)phenyl]-2-propenoic acid (8j). Prepared as described above. using 2-aminocinnamic acid. (14.1 mg, yield 97%) ¹H NMR (DMSO- d_6) δ 8.85 (d. J = 3.0 Hz, 1H), 8.57 (dd. J = 9.3, 2.7 Hz, 1H), 7.88 (d. J = 7.5 Hz, 1H), 7.80 (s, 1H), 7.73-7.61 (m, 3H), 7.49 (dd, J = 7.5, 0.9 Hz, 1H), 6.63 (d, J = 16.2 Hz, 1H), 4.26 (dt, J = 15.0, 7.3 Hz, 1H), 4.00 (dt. J = 15.0, 7.3 Hz, 1H), 1.84-1.72 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H). ESIMS m z 416 [MH]⁺.

(2E)-3-[3-(2-Oxido-4-oxo-1-propyl-1,4-dihydro-3H-2,1,

3-benzothiadiazin-3-yl)phenyl]-2-propenoic acid (8k). Prepared as described above, using 3-aminocinnanic acid. (14.4 mg, yield 99%) ¹H NMR (DMSO- d_6) δ 8.83 (dd, J = 8.2, 2.9 Hz, 1H), 8.59 (dd, J = 9.0, 2.9 Hz, 1H), 8.07 (dd, J = 9.0, 2.7 Hz, 1H), 7.76 (dd, J = 9.0, 4.6 Hz, 1H), 7.69-7.61 (m, 2H), 7.54-7.43 (m, 2H), 6.63 (d, J = 15.9 Hz, 1H), 4.27 (dt, J = 14.7, 6.0 Hz, 1H), 3.98 (dt, J = 14.7, 7.5 Hz, 1H), 1.82-1.71 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H), ESIMS *m*·z 416 [MH]⁺.

(2E)-3-[4-(2-Oxido-4-oxo-1-propyl-1,4-dihydro-3H-2,1, 3-benzothiadiazin-3-yl)phenyl]-2-propenoic acid (8l). Prepared as described above, using 4-aminocinnamic acid. (12.6 mg, yield 97%)¹H NMR (DMSO- d_6) δ 8.85 (d. J = 3.0 Hz, 1H), 8.57 (dd. J = 9.3, 2.7 Hz, 1H), 7.91 (d. J = 8.4 Hz, 2H), 7.71 (d, J = 9.3 Hz, 1H), 7.66 (d. J = 15.9 Hz, 1H), 7.50 (d. J = 8.4 Hz, 2H), 6.64 (d, J = 15.9 Hz, 1H), 4.27 (dt, J = 14.9, 6.3 Hz, 1H), 4.00 (dt. J = 14.9, 7.5 Hz, 1H), 1.80-1.71 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H), ESIMS *m*: z 416 [MH]⁺.

References

- Reviews: (a) Thompson, L. A.: Ellman, J. A. Chem. Rev. 1996, 96, 555. (b) Booth, S.: Hermkens, P. H. H.: Ottenheijm, H. C. J.: Rees, D. C. Tetrahedron 1998, 54, 15385.
- (a) Dressman, B. A.; Spangle, L. A.; Kaldor, S. W. Tetrahedron Lett. 1996, 37, 937. (b) Hancssian, S.; Yang, R. Y. Tetrahedron Lett. 1996, 37, 5835. (c) Bunin, B. A.; Ellman, J. A. J. Am. Chem. Soc. 1992, 114, 10997. (d) Buckman, B. O.; Mohan, R. Tetrahedron Lett, 1996, 37, 4439. (e) Gouilleux, L.; Fehrentz, J.-A.; Winternitz, F.; Martinez, J. Tetrahedron Lett, 1996, 37, 7031. (f) Shao, H.; Colucci, M.; Tong, S.; Zhang, H.; Castelhano, A. L. Tetrahedron Lett. 1998, 39, 7235.
- (a) Makino, S.: Suzuki, N.; Nakanishi, E.; Tsuji, T. Tetrahderon Lett. 2000, 41, 8333. (b) Makino, S.: Suzuki, N.; Nakanishi, E.; Tsuji, T. Synlett 2000, 1670. (c) Makino, S.: Nakanishi, E.; Tsuji, T. Tetrahderon Lett. 2001, 42, 1749. (d) Makino, S.: Suzuki, N.; Nakanishi, E.; Tsuji, T. Synlett 2001, 333. (e) Makino, S.; Okuzumi, T.; Nakanishi, E.; Tsuji, T. Tetrahderon Lett. 2002, 43, 8401. (f) Makino, S.: Nakanishi, E.; Tsuji, T. J. Combi. Chem. 2003, 5, 73.
- (a) Gordeev, M. F.: Hui, H. C.: Gordon, E. M.: Patel, D. V. *Tetrahedron Lett*, **1997**, *38*, 1729. (b) Gordeev, M. F.: Luehr, G. W.; Hui, H. C.; Gordon, E. M.: Patel, D. V. *Tetrahedron* **1998**, *54*, 15879.
- Mayer, J. P.: Lewis, G. S.; Curtis, M. J.; Zhang, J. W. Tetrahedron Lett, 1997, 38, 8445.
- Tumelty, D.: Schwarz, M. K.: Cao, K.: Needels, M. C. *Tetrahedron Lett*, **1999**, 40, 6185.
- (a)Nefzi, A.; Ostresh, J. M.; Giulianotti, M.; Houghten, R. A. *Tetrahedron Lett.* **1998**, *39*, 8199. (b)Xiao, X. Y.; Ngu, K.; Chao, C.; Patel, D. V. J. Org. Chem. **1997**, *62*, 6968.
- Mohamed, N.: Bhatt, U.: Just, G. Tetrahedron Lett. 1998, 39, 8213.
- 9. Santilli, A. A.; Osdene, T. S. J. Org. Chem. 1964, 29, 2717.
- (a) Phillips, G. B.; Wei, G. P. Tetrahedron Lett. 1996, 37, 4887. (b)
 Yeh, C.-M.; Sun, C.-M. Tetrahedron Lett. 1999, 40, 7247.
- Morales, G. A.; Corbett, J. W.; DeGrado, W. F. J. Org. Chem. 1998, 63, 1172.
- Kiselyov, A. S.; Eisenberg, S.; Luo, Y. Tetrahedron 1998, 54, 10635.
- Nefzi, A.; Ong, N. A.; Giulianotti, M. A.; Ostresh, J. M.; Houghten, R. A. Tetrahedron Lett. 1999, 40, 4939.
- SynPhaseTM Lanterns are available from Mimotopes (Clayton, Victoria, Australia). The type of Lantern used in this communi-

cation was SP-PS-D-HMP (long-chain hydroxymethyl phenoxy linker), loading 35 mmol/Lantern.

15. Representative Procedure for **8a**. The 4-aminobenzoic acid ester bearing SynPhase^{IM} Lantern (SP-PS-D-HMP loading 35 μ mol-Lantern)¹⁴ was placed into a 2.5-mL syringe without a filter. After 2-fluoro-5-nitrobenzoic acid (1.0 mmol) was activated with DIC-HOAt-NMP (0.5 mmol-1.0 mmol-2 mL) at 25 °C for 1 h, the Lantern was treated with this solution for 16 h. The Lantern was washed with dry DMF (2 mL × 3) and dry DCM (2 mL × 3), and dried under a vacuum for 1h. After n-propylamine/NMP (200 uL-1.0 mL) was added to the Lantern, the Lantern was shaken for 3 h and washed with DMF (2 mL × 3) and DCM (2 mL × 3). Then, to the syringe was added the mixture of thionyl chloride:1.2.4triazole/DIEA-DCM (80 uL/250 mg-400 uL/1 mL), and it was shaken for 16 h. After it was washed with DCM (2 mL × 2), DMF (2 mL × 3) and DCM (2 mL × 3), the resin was dried under a vacuum for 3 h. The resin was treated with 95% TFA/H₂O for 1h and the filtrate was concentrated with Genevac evaporator.¹⁷ The residue was dissolved with 50% CH₃CN/H₂O and lyophilized to give the erude product 8a. (15.8 mg. 76%) ¹H NMR (Varian VXR-300S, 300 MHz, DMSO-d₈) δ 8.85 (d, J = 2.7 Hz, 1H), 8.57 (dd, J = 9.2, 2.7 Hz, 1H), 8.13 (dt, J = 8.7, 2.1 Hz, 2H), 7.72 (d, J = 9.2 Hz, 1H), 7.60 (dt, J = 8.7, 2.1 Hz, 2H), 4.28 (dt, J = 14.7, 6.3 Hz, 1H), 4.0 (dt, J = 14.7, 7.7 Hz, 1H), 1.80-1.71 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H), ESIMS m z 390 [MH]⁺.

- After the reduction of the nitro group of 7a. 4-[6-(benzoylamino)-2-oxido-4-oxo-1-propyl-1.4-dihydro-3H-2.1,3-benzothiadiazin-3yl]benzoic acid was synthesized using benzoic acid anhydride.
- Genevac HT-8 was available from Genevac Limited (Farthing Road, Ipswich, IP1 5AP, UK).