DOI QR코드

DOI QR Code

Photochemical Reaction of Nalidixic Acid in Methanol

  • Park, Hyoung-Ryun (Department of Chemistry, Chonnam National University) ;
  • Park, Ok-Hyun (Department of Chemistry, Chonnam National University) ;
  • Lee, Hong-Yune (Department of Chemistry, Chonnam National University) ;
  • Seo Jung-Ja (Department of Chemistry, Chonnam National University) ;
  • Bark, Ki-Min (Department of Chemical Education and Institute of Natural Sciences, Gyeongsang National University)
  • Published : 2003.11.20

Abstract

The photochemical reactions of methanolic nalidixic acid (NAL) solution in the absence and in the presence of air have been investigated using 300 nm UV light. From the reactions, 1-ethyl-7-methyl-4-oxo-4-hydro-1,8-naphthyridine (EMDN),formic acid, and formaldehyde are produced. In the presence of air, hydrogen peroxide is also detected along with the products listed above. The presence of oxygen during the irradiation of methanolic NAL solution effects on the product yield. The initial quantum yields of the products and of the NAL decomposition are determined. Possible reaction pathways for the photochemical reaction are suggested on the basis of the products analysis.

Keywords

References

  1. Lesher, G.; Froelich, M.; Gruett, J. J. Med. Pharm. Chem. 1962, 5,1063. https://doi.org/10.1021/jm01240a021
  2. Kang, J. S.; Kim, T. H.; Park, K. B.; Chung, B. H.; Youn, J. I.Photodermal. Photoimmunol. Photome. 1993, 9, 159.
  3. Cho, Y. H.; Kim, T. H.; Park, H. B.; Park, C. K.; Park, K. M. Kor.J. Dermatol. 1995, 33, 1021.
  4. Detzer, N.; Huber, B. Tetrahedron 1975, 31, 1937. https://doi.org/10.1016/0040-4020(75)87055-4
  5. Moore, D. E.; Hemmens, V. J.; Yip, H. Photochem. Photobiol.1984, 39, 57. https://doi.org/10.1111/j.1751-1097.1984.tb03404.x
  6. Vermeersch, G.; Ronfard-Haret, J. C.; Bazin, M.; Carillet, V.;Moriere, P.; Santus, R. Photochem. and Photobiol. 1991, 54,661. https://doi.org/10.1111/j.1751-1097.1991.tb02072.x
  7. Fernandez, E.; Cardenas, A. M. J. Photochem. Photobiol., B:Photobiol. 1990, 4, 329. https://doi.org/10.1016/1011-1344(90)85038-X
  8. Park, H. R.; Chung, K. Y.; Lee, H. C.; Lee, J. K.; Bark, K. M. Bull.Korean Chem. Soc. 2000, 21, 849.
  9. Hatchard, C. G.; Parker, C. A. Proc. Roy. Soc. (London) 1956,A235, 518.
  10. Lee, J.; Seliger, H. H. J. Chem. Phys. 1968, 40, 519.
  11. Atkins, R. C. J. Chem. Ed. 1975, 52, 550. https://doi.org/10.1021/ed052p550
  12. Bark, K. M.; Force, R. K. Spectrochim. Acta 1993, 49A, 1605.
  13. Eaton, D. F. Reference Compounds for Fluorescence Measurements;IUPAC Organic Chemistry Division: Washington DC, USA,1987; pp 1-11.
  14. Demas, J. N.; Grosby, G. A. J. Phys. Chem. 1971, 75, 2463. https://doi.org/10.1021/j100685a009
  15. Nasch, T. Biochem. J. 1958, 55, 418.
  16. Wolfe, W. C. J. Anal. Chem. 1962, 34, 1328. https://doi.org/10.1021/ac60190a040
  17. Sonntag, C. Z. Phys. Chem. 1970, 69, 292.
  18. Wine, P. H.; Astalos, R. J.; Mauldin III, R. L. J. Phys. Chem. 1985,89, 2620. https://doi.org/10.1021/j100258a037

Cited by

  1. The formation of nalidixic acid dimers and excimers in aqueous solutions vol.83, pp.6, 2009, https://doi.org/10.1134/S0036024409060107
  2. Photolysis and quantum-chemical calculations of the nalidixic acid radical states vol.82, pp.2, 2012, https://doi.org/10.1134/S1070363212020247
  3. Effects of UV-, Visible-, Near-Infrared Beams in Three Therapy Resistance Case Studies of Fungal Skin infections vol.03, pp.07, 2013, https://doi.org/10.4236/opj.2013.37A001
  4. On-line spectrophotometric determination of scandium after preconcentration on XAD-4 resin impregnated with nalidixic acid vol.10, pp.3, 2013, https://doi.org/10.1007/s13738-012-0180-6
  5. Photochemical behavior of levofloxacin vol.42, pp.6, 2008, https://doi.org/10.1134/S0018143908060076
  6. Photochemical Decomposition of Nalidixic Acid in Water vol.26, pp.10, 2003, https://doi.org/10.5012/bkcs.2005.26.10.1607
  7. Photophysics and Photochemistry of Nalidixic Acid vol.82, pp.1, 2003, https://doi.org/10.1562/2005-04-11-ra-488
  8. Structure and Medium Effects on the Photochemical Behavior of Nonfluorinated Quinolone Antibiotics† : Photochemistry and Photobiology, 2007, 83 vol.83, pp.3, 2003, https://doi.org/10.1562/2006-08-21-ra-1009
  9. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  10. Photoinduced decarboxylation of 9‐oxo‐6,9‐dihydro[1,2,5]selenadiazolo[3,4‐f]quinoline‐8‐carboxylic acid vol.25, pp.8, 2003, https://doi.org/10.1002/poc.1955
  11. Recent Development of Samarium Diiodide and Other Samarium Reagents in Organic Transformation vol.41, pp.6, 2003, https://doi.org/10.6023/cjoc202011034