DOI QR코드

DOI QR Code

1.6 M SOLAR TELESCOPE IN BIG BEAR - THE NST

  • GOODE PHILIP R. (Big Bear Solar Observatory, NJIT) ;
  • DENKER CARSTEN.J. (Big Bear Solar Observatory, NJIT) ;
  • DIDKOVSKY LEONID I. (Big Bear Solar Observatory, NJIT) ;
  • KUHN J. R. (Institute for Astronomy, University of Hawaii) ;
  • WANG HAIMIN (Big Bear Solar Observatory, NJIT)
  • Published : 2003.06.01

Abstract

New Jersey Institute of Technology (NJIT), in collaboration with the University of Hawaii (UH), is upgrading Big Bear Solar Observatory (BBSO) by replacing its principal, 65 cm aperture telescope with a modern, off-axis 1.6 m clear aperture instrument from a 1.7 m blank. The new telescope offers a significant incremental improvement in ground-based infrared and high angular resolution capabilities, and enhances our continuing program to understand photospheric magneto-convection and chromospheric dynamics. These are the drivers for what is broadly called space weather - an important problem, which impacts human technologies and life on earth. This New Solar Telescope (NST) will use the existing BBSO pedestal, pier and observatory building, which will be modified to accept the larger open telescope structure. It will be operated together with our 10 inch (for larger field-of-view vector magnetograms, Ca II K and Ha observations) and Singer-Link (full disk H$\alpha$, Ca II K and white light) synoptic telescopes. The NST optical and software control design will be similar to the existing SOLARC (UH) and the planned Advanced Technology Solar Telescope (ATST) facility led by the National Solar Observatory (NSO) - all three are off-axis designs. The NST will be available to guest observers and will continue BBSO's open data policy. The polishing of the primary will be done in partnership with the University of Arizona Mirror Lab, where their proof-of-concept for figuring 8 m pieces of 20 m nighttime telescopes will be the NST's primary mirror. We plan for the NST's first light in late 2005. This new telescope will be the largest aperture solar telescope, and the largest aperture off-axis telescope, located in one of the best observing sites. It will enable new, cutting edge science. The scientific results will be extremely important to space weather and global climate change research.

Keywords

References

  1. Denker, C., Didkovsky, L.I., Ma, J., Shumko, S., Varsik, J., Varsik, J., Wang, H., & Goode, P.R. 2003, Imaging Magnetographs for High Resolution Solar Observations in the Visible and Near Infrared Wavelength Region, Astron.Nachr., in press
  2. Denker, C., Yang, G., & Wang, H. 2001, Near RealTime Image Reconstruction, Sol. Phys., 202, 63-70 https://doi.org/10.1023/A:1011886923189
  3. Didkovsky, L.V., Dolgushyn, A.I., Marquette, W.H., Nenow, J., Varsik, J.R., Hegwer, S., Ren, D., Fletcher, S., Richards, K., Rimmele, T.R., Denker, C., Wang, H., & Goode, P.R. 2002, High-Order Adaptive Optics System for Big Bear Solar Obser vatory, Proc. SPIE, 4853-75
  4. Goode, P. R, Wang, H., Marquette, W. H., & Denker, C. 2000, Measuring Seeing from Solar Scintillometry and the Spectral Ratio Technique, Sol. Phys., 195, 421-431 https://doi.org/10.1023/A:1005285314970
  5. Kuhn, J. R., Coulter, R. Lin H., & Mickey, D.L. 2003, The SOLARC Off-Axis Coronagraph, 2003 SPIE, Kona, HI, in press
  6. Parker, E. N. 1988, Nanoflares and the solar X-ray corona, ApJ, 330, 474-479 https://doi.org/10.1086/166485
  7. Qiu, J., Ding, M. D., Wang, H., Denker, C., & Goode, P. R. 2000, Ultraviolet and H$\alpha$ Emission in Ellerman Bombs, ApJL, 544, L157-L161 https://doi.org/10.1086/317310
  8. Qiu, J., Ding, M. D., Wang, H., Gallagher, P. T., Sato, J., Denker, C., & Goode, P. R. 2001, Asymmetric Behavior of H$\alpha$ Footpoint Emission during the Early Phase of an Impulsive Flare, ApJ, 554, 445-450 https://doi.org/10.1086/321361
  9. Qiu, J., Lee, J. W., Gary, D. E., & Wang, H. 2002, Motion of Flare Footpoint Emission and Inferred Electrie Field in Reconnecting Current Sheets, ApJ, 565, 1335-1347 https://doi.org/10.1086/324706
  10. Rimmele, T. R., Radick, R. R., Richards, K., & Dunn, R. B. 1999, The NSO Solar Adaptive Optics Program: First Results, AAS Spring Meeting, 5/99
  11. Scharmer, G., Gudiksen, B. V., Kiselman, D., Lofdahl,M. G., & Rouppe van der Voort, L. H. M. 2002, Dark Cores in Sunspot Penumbral Filaments, Nature, 420,151 https://doi.org/10.1038/nature01173
  12. Sch$\"{u}$ssler, M. 2001, Numerical Simulation of Solar Magneto-Convection In Advanced Solar Polarimetry, M. Sigwarth (ed.), ASP Conference Series, 236, 343-354
  13. Spirock, T., Denker, C., Chen, H., Chae, J., Qiu, J., Varsik, J., Wang, H., Goode, P. R., & Marquette, W. 2001, The Big Bear Solar Observatory's Digital Vector Magnetograph In ASP Conf. Ser. 236, Advanced Solar Polarimetry Theory: Observation and Instrumentation, ed. M. Sigwarth (San Francisco: ASP), 65
  14. Wang, H., Qiu, J., Denker, C., Spirock, T., Chen, H., and Goode, P. R. 2000, High-Gadence Observations of an Impulsive Flare, ApJ, 542, 1080-1087 https://doi.org/10.1086/317059

Cited by

  1. High-Spatial-Resolution Imaging Combining High-Order Adaptive Optics, Frame Selection, and Speckle Masking Reconstruction vol.227, pp.2, 2005, https://doi.org/10.1007/s11207-005-1108-4
  2. Active Region Coronal Rain Event Observed by the Fast Imaging Solar Spectrograph on the NST vol.289, pp.11, 2014, https://doi.org/10.1007/s11207-014-0559-x
  3. Observational Evidence of Magnetic Reconnection for Brightenings and Transition Region Arcades inIRISObservations vol.836, pp.1, 2017, https://doi.org/10.3847/1538-4357/836/1/52
  4. Non-LTE modelling of prominence fine structures using hydrogen Lyman-line profiles vol.577, 2015, https://doi.org/10.1051/0004-6361/201425138
  5. Wavelength-diverse polarization modulators for Stokes polarimetry vol.49, pp.18, 2010, https://doi.org/10.1364/AO.49.003580
  6. Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear vol.331, pp.6, 2010, https://doi.org/10.1002/asna.201011390
  7. The Big Bear Solar Observatory Ca II K-line index for solar cycle 23 vol.331, pp.7, 2010, https://doi.org/10.1002/asna.201011399
  8. NEW SOLAR TELESCOPE OBSERVATIONS OF MAGNETIC RECONNECTION OCCURRING IN THE CHROMOSPHERE OF THE QUIET SUN vol.713, pp.1, 2010, https://doi.org/10.1088/2041-8205/713/1/L6
  9. Adaptive Optics at the Big Bear Solar Observatory: Instrument Description and First Observations vol.119, pp.852, 2007, https://doi.org/10.1086/512493
  10. Magnetic field and radiative transfer modelling of a quiescent prominence vol.567, 2014, https://doi.org/10.1051/0004-6361/201322777
  11. Heat-stop structure design with high cooling efficiency for large ground-based solar telescope vol.54, pp.21, 2015, https://doi.org/10.1364/AO.54.006441