DOI QR코드

DOI QR Code

OBSERVATIONAL TESTS OF CHROMOSPHERIC MAGNETIC RECONNECTION

  • CHAE JONGCHUL (Department of Astronomy and Space Science, Chungnam National University, Big Bear Solar Observatory, NJIT) ;
  • MOON YONG-JAE (Big Bear Solar Observatory, NJIT, Korea Astronomy Observatory) ;
  • PARK SO-YOUNG (Department of Astronomy and Space Science, Chungnam National University)
  • Published : 2003.06.01

Abstract

Observations have indicated that magnetic reconnect ion may occur frequently in the photosphere and chromosphere as well as in the solar corona. The observed features include cancelling magnetic features seen in photospheric magnetograms, and different kinds of small-scale activities such as UV explosive events and EUV jets. By integrating the observed parameters of these features with the Sweet-Parker reconnect ion theory, an attempt is made to clarify the nature of chromospheric magnetic reconnection. Our results suggest that magnetic reconnect ion may be occurring at many different levels of the photosphere and chromosphere without a preferred height and at a faster speed than is predicted by the Sweet-Parker reconnect ion model using the classical value of electric conductivity. Introducing an anomalous magnetic diffusivity 10-100 times the classical value is one of the possible ways of explaining the fast reconnect ion as inferred from observations.

Keywords

References

  1. Chae, J. 2003, The Formation of a Prominence in NOAA Active Region 8668. II. Trace Observations of Jets and Eruptions Associated with Cancelling Magnetic Features, ApJ, 584, 1084 https://doi.org/10.1086/345739
  2. Chae, J., Wang H., Lee C., Goode P. R., & Sch$\"{u}$hle U. 1998a, Photospheric Magnetic Field Changes Associated with Transition Region Explosive Events, ApJ, 497, L109 https://doi.org/10.1086/311289
  3. Chae, J., Wang, H., Lee, C.-Y., Goode, & P. R. Sch$\"{u}$hle, U. 1998b, Chromospheric Upfolw Events Associated with Transition Region Explosive Events, ApJ, 504, L123 https://doi.org/10.1086/311583
  4. Chae, J., Qiu, J., Wang, H., & Goode, P. R. 1999, Extreme Ultraviolet Jets and Halpha Surges in Solar Microflares, ApJ, 513, L75 https://doi.org/10.1086/311910
  5. Chae, J., Denker, C., Spirock, T. J., Wang, H., & Goode P. R. 2000, High-Resolution H Observations of Proper Motion in NOAA 8668: Evidence for Filament Mass In jection by Chromospheric Reconnection, Sol. Phys., 195, 333 https://doi.org/10.1023/A:1005242832293
  6. Chae, J., Wang, H., Qiu, J., Goode, P. R., Strous, L., & Yun H. S.: 2001, The Formation of a Prominence in Active Region NOAA 8668. I. SOHO/MDI Observations of Magnetic Field Evolution, ApJ, 560 , 476 https://doi.org/10.1086/322491
  7. Chae, J., Moon, Y.-J., Wang, H., & Yun, H. S. 2002a, Flux Cancellation Rates and Converging Speeds of Cancelling Magnetic Features, Sol. Phys., 207, 73 https://doi.org/10.1023/A:1015534219066
  8. Chae, J., Park, Y. D., Moon, Y.-J., Wang, H., & Yun, H. S. 2002b, Temperatures of EUV-Emitting Plasma Structures Observed by the Transition Region And Coronal Explorer, ApJ, 567, L159 https://doi.org/10.1086/340003
  9. Chae, J., Choi, B., Park, M. 2002c, Chromospheric Magnetic Reconnection on the Sun, JKAS, 35, 59
  10. Dere, K. P., Bartoe, J.-D. F., Brueckner, G. E., Ewing, J., & Lund, P. 1991, Explosive events and magnetic reconnection in the solar atmosphere, J. Geophys. Res., 96, 9399 https://doi.org/10.1029/90JA02572
  11. Dere, K. P. 1994, Explosive events, magnetic reconnection, and coronal heating, Adv. Space Res., 14, 13
  12. Harvey, K. L., Jones, H. P., Schrijver, C. J., & Penn, M. J. 1999, Does Magnetic Flux Submerge at Flux Cancelation Sites?, Sol. Phys., 190, 35 https://doi.org/10.1023/A:1005237719407
  13. Hermans, L. M., & Martin, S. F.: 1986, Small-scale eruptive filaments on the quiet sun, in A. I. Poland (ed.), Coronal and Prominence Plasmas, 369
  14. Kim, J., Yun, H. S., Lee, S., Chae, J., Goode, P. R., & Wang H. 2001, A Rapid Change in Magnetic Connectivity Observed Before Filament Eruption and Its Associated Flare, ApJ, 547, L85 https://doi.org/10.1086/318883
  15. Kubat, J., & Karlicky M. 1986, Electrical conductivity in the solar photosphere and chromosphere, Bull. Astron.l Inst. Czechoslovakia, 37, 155
  16. Lee, C., Chae, J., & Wang, H. 2000, Dynamical Characteristics of Small-Scale H Upflow Events on the Quiet Sun, ApJ, 545, 1124 https://doi.org/10.1086/317821
  17. Lee, S., Yun, H. S., Chae, J., Goode, P. R. 2003, Small-scale Ha Dynamic Features Supported by Chromospheric Magnetic Reconnection, JKAS, 36, S21
  18. Litvinenko, Y. 1999, Photospheric Magnetic Reconnection and Canceling Magnetic Features on the Sun, ApJ, 515, 435 https://doi.org/10.1086/307001
  19. Litvinenko, Y.,& Martin, S. F. 1999, Magnetic reconnection as the cause of a photospheric canceling feature and mass flows in a filament, Sol. Phys., 190, 45 https://doi.org/10.1023/A:1005284116353
  20. Livi, S. H. B., Wang, J., & Martin, S. F. 1985, The cancellation of magnetic flux. I - On the quiet sun, Australian J. Phys., 38, 855 https://doi.org/10.1071/PH850855
  21. Livi, S. H. B., Martin, S., Wang, H., & Ai, G. 1989, The association of flares to cancelling magnetic features on the sun, Sol. Phys., 121, 197
  22. Martin, S. F. 1990, Small-Scale Magnetic Features Observed in the Photosphere, in J. 0. Stenflo (ed.), Solar Photosphere: Structure, Convection and Magnetic Fields, IAU Symposium, 138, 129
  23. Martin, S. F., Livi, S. H. B., & Wang, J. 1985, The cancellation of magnetic flux. II - In a decaying active region, Australian J. Phys., 38, 929 https://doi.org/10.1071/PH850929
  24. Moon, Y.-J., Chae, J., Choe, G. S., Wang, H., & Park, Y. D. 2003, PreFlare Activity And Filament Initiation Associated With An X1. 8 Flare, ApJ,submitted
  25. Parker, E. N. 1957, Sweet's Mechanism for Merging Magnetic Fields in Conducting Fluids, J. Geophys. Res., 62, 509 https://doi.org/10.1029/JZ062i004p00509
  26. Petschek, H. E. 1964, Magnetic Field Annihilation, in Physics of Solar Flares, ed. W. H. Hess, 425
  27. Priest, E. R., Parnell, C. E., & Martin, S. F. 1994, A converging flux model of an X-ray bright point and an associated canceling magnetic feature, ApJ, 427, 459 https://doi.org/10.1086/174157
  28. Sturrock, P. A. 1999, Chromospheric Magnetic Reconnection and Its Possible Relationship to Coronal Heating, ApJ, 521, 451 https://doi.org/10.1086/307544
  29. Sweet, P. A. 1958, The Neutral Point Theory of Solar Flares, IAU symposium, 6, 123
  30. Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, Structure of the solar chromosphere. III - Models of the EUV brightness components of the quiet-sun, ApJS. 45, 635 https://doi.org/10.1086/190731
  31. Wang, J., & Shi, Z. 1993, The flare-associated magnetic changes in an active region. II - Flux emergence and cancellation, Sol. Phys., 143, 119 https://doi.org/10.1007/BF00619100
  32. Webb, D. F., Martin, S. F., Moses, D., & Harvey, J. W. 1993, The correspondence between X-ray bright points and evolving magnetic features in the quiet sun, Sol. Phys., 144, 15 https://doi.org/10.1007/BF00667979
  33. Yokoyama, T., & Shibata, K. 1994, What is the condition for fast magnetic reconnection?, ApJ, 436, L197 https://doi.org/10.1086/187666
  34. Zhang, J., Wang, J., Deng, Y., & Wu, D.: 2001, Magnetic Flux Cancellation Associated with the Major Solar Event on 2000 July 14, ApJ, 548, L99 https://doi.org/10.1086/318934
  35. Zwaan, C. 1987, Elements and patterns in the solar magnetic field, ARA&A, 25, 83 https://doi.org/10.1146/annurev.aa.25.090187.000503

Cited by

  1. Magnetic Reconnection Models of Prominence Formation vol.634, pp.2, 2005, https://doi.org/10.1086/491641
  2. Physical State of the Photosphere at the Onset Phase of a Two-Ribbon Solar Flare vol.250, pp.2, 2008, https://doi.org/10.1007/s11207-008-9223-7
  3. Study of the structures of the explosive events in the UV vol.5, pp.S264, 2009, https://doi.org/10.1017/S1743921309992778
  4. Scaling of Sweet–Parker reconnection with secondary islands vol.16, pp.12, 2009, https://doi.org/10.1063/1.3274462
  5. Energy of Alfvén waves generated during magnetic reconnection vol.379, pp.36, 2015, https://doi.org/10.1016/j.physleta.2015.06.043
  6. FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY vol.799, pp.1, 2015, https://doi.org/10.1088/0004-637X/799/1/79
  7. Possible two-step solar energy release mechanism due to turbulent magnetic reconnection vol.12, pp.5, 2005, https://doi.org/10.1063/1.1862249
  8. On the relationship between magnetic cancellation and UV burst formation vol.463, pp.2, 2016, https://doi.org/10.1093/mnras/stw2034
  9. RATES OF PHOTOSPHERIC MAGNETIC FLUX CANCELLATION MEASURED WITHHINODE vol.704, pp.1, 2009, https://doi.org/10.1088/0004-637X/704/1/L71
  10. The chromospheric line-of-sight velocity variations in a solar microflare vol.55, pp.3, 2015, https://doi.org/10.1016/j.asr.2014.07.036
  11. Magnetic Flux Cancellation and Coronal Magnetic Energy vol.638, pp.2, 2006, https://doi.org/10.1086/498638
  12. Magnetic Reconnection for Coronal Conditions: Reconnection Rates, Secondary Islands and Onset vol.172, pp.1-4, 2012, https://doi.org/10.1007/s11214-011-9755-2
  13. Magnetic reconnection with asymmetry in the outflow direction vol.115, pp.A9, 2010, https://doi.org/10.1029/2009JA015183
  14. Signatures of Sweet-Parker magnetic reconnection in the solar chromosphere vol.495, pp.3, 2009, https://doi.org/10.1051/0004-6361:200811034
  15. THE IMPACT OF MICROSCOPIC MAGNETIC RECONNECTION ON PRE-FLARE ENERGY STORAGE vol.707, pp.2, 2009, https://doi.org/10.1088/0004-637X/707/2/L158
  16. Flux Pile‐up Magnetic Reconnection in the Solar Photosphere vol.662, pp.2, 2007, https://doi.org/10.1086/518115
  17. Determination of Magnetic Diffusivity from High‐Resolution Solar Magnetograms vol.683, pp.2, 2008, https://doi.org/10.1086/590074
  18. Flare Energy Release in the Lower Solar Atmosphere near the Magnetic Field Polarity Inversion Line vol.840, pp.2, 2017, https://doi.org/10.3847/1538-4357/aa6dfd
  19. STATISTICAL STUDY OF CHROMOSPHERIC ANEMONE JETS OBSERVED WITHHINODE/SOT vol.731, pp.1, 2011, https://doi.org/10.1088/0004-637X/731/1/43
  20. Cooperative Observation of Ellerman Bombs between the Solar Optical Telescope aboard Hinode and Hida/Domeless Solar Telescope vol.60, pp.3, 2008, https://doi.org/10.1093/pasj/60.3.577
  21. Reconnection in photospheric-chromospheric current sheet and coronal heating vol.37, pp.2, 2011, https://doi.org/10.1134/S1063780X11020036
  22. Height Dependence of Gas Flows in an Ellerman Bomb vol.60, pp.1, 2008, https://doi.org/10.1093/pasj/60.1.95