DOI QR코드

DOI QR Code

LYMANα EMITTERS BEYOND REDSHIFT 5: THE DAWN OF GALAXY FORMATION

  • TANIGUCHI YOSHIAKI (Astronomical Institute, Graduate School of Science, Tohoku University) ;
  • SHIOYA YASUHIRO (Astronomical Institute, Graduate School of Science, Tohoku University) ;
  • AJIKI MASARU (Astronomical Institute, Graduate School of Science, Tohoku University) ;
  • FUJITA SHINOBU S. (Astronomical Institute, Graduate School of Science, Tohoku University) ;
  • NAGAO TOHRU (Astronomical Institute, Graduate School of Science, Tohoku University) ;
  • MURAYAMA TAKASHI (Astronomical Institute, Graduate School of Science, Tohoku University)
  • Published : 2003.09.01

Abstract

The 8m class telescopes in the ground-based optical astronomy together with help from the ultra-sharp eye of the Hubble Space Telescope have enabled us to observe forming galaxies beyond red shift z = 5. In particular, more than twenty Ly$\alpha$-emitting galaxies have already been found at z > 5. These findings provide us with useful hints to investigate how galaxies formed and then evolved in the early universe. Further, detailed analysis of Ly$\alpha$ emission line profiles are useful in exploring the nature of the intergalactic medium because the trailing edge of cosmic reionization could be close to z $\~$ 6 -7, at which forming galaxies have been found recently. We also discuss the importance of superwinds from forming galaxies at high redshift, which has an intimate relationship between galaxies and the intergalactic medium. We then give a review of early cosmic star formation history based on recent progress in searching for Ly$\alpha$-emitting young galaxies beyond red shift 5.

Keywords

References

  1. ApJ v.508 Abel,T.;Anninos,Pe.;Norman,M.L.;Zhang,Yu. https://doi.org/10.1086/306410
  2. Abel, T., Norman, M. L., & Madau, P. 1999, ApJ, 523, 66 https://doi.org/10.1086/307739
  3. ApJ v.523 Abel,T.;Norman,M.L.;Madau,P. https://doi.org/10.1086/307739
  4. ApJ v.576 Ajiki,M.(et al.) https://doi.org/10.1086/343026
  5. AJ Ajiki,M.(et al.)
  6. A&A v.173 Arimoto,N.;Yoshii,Y.
  7. ApJ v.153 Bahcall,J.N.;Greenstein,J.L.;Sargent,W.L.W. https://doi.org/10.1086/149696
  8. Science v.284 Bahcall,N.A.;Ostriker,J.P.;Perlmutter,S.;Steinhardt,P. https://doi.org/10.1126/science.284.5419.1481
  9. AJ v.121 Baker,J.C.;Hunstead,R.W.;Bremer,M.N.;Bland-Hawthorn,J.;Athreya,R.M.;Barr,J. https://doi.org/10.1086/319948
  10. Nature v.394 Barger,A.(et al.) https://doi.org/10.1038/28338
  11. AJ v.117 Barger,A.J.;Cowie,L.L.;Smail,I.;Ivison,R.J.;Blain,A.W.;Kneib,J.P. https://doi.org/10.1086/300890
  12. Physics Reports v.349 Barkana,R.;Loeb,A. https://doi.org/10.1016/S0370-1573(01)00019-9
  13. AJ v.122 Becker,R.H.(et al.) https://doi.org/10.1086/324231
  14. MNRAS v.309 Blain,A.W.(et al.) https://doi.org/10.1046/j.1365-8711.1999.02879.x
  15. ApJ v.563 Bland-Hawthorn,J.;van Bruegel,W.;Gillingham,P.R.;Baldry,I.K.;Jones,D.H. https://doi.org/10.1086/323770
  16. astro-ph/9707315 Bland-Hawthorn,J.;Jones,H.
  17. ApJ v.562 Bond,N.A.;Churchill,C.W.;Charlton,J.C.;Vogt,S.S. https://doi.org/10.1086/323876
  18. astro-ph/0306215 Bouwens,R.J.(et al.) https://doi.org/10.1086/377477
  19. MNRAS v.153 Brocklehurst,M. https://doi.org/10.1093/mnras/153.4.471
  20. ApJ v.527 Bromm,V.;Coppi,P.S.;Larson,R.B. https://doi.org/10.1086/312385
  21. ASP Conf. Ser. v.254 Extragalactic Gas at Low Redshift Brunner,R.J.;Djorgovski,S.G.;Prince,T.A.;Szalay,A.S.;John S. Mulchaey(ed.);John Stocke(ed.)
  22. ApJ v.152 Burbidge,E.M.;Lynds,C.R.;Stockton,A.N. https://doi.org/10.1086/149619
  23. ApJ v.542 Cen,R.;Haiman,Z. https://doi.org/10.1086/312937
  24. ApJ v.570 Cen,R.;McDonald,P. https://doi.org/10.1086/339723
  25. ApJ v.437 Cen,R.;Miralda-Escude,J.;Ostriker,J.P.;Rauch,M. https://doi.org/10.1086/187670
  26. ApJ v.548 Chapman,S.C.;Lewis,G.F.;Scott,D.;Richards,E.;Borys,C.;Steidel,C.C.;Adelberger,K.L.;Shapley,A.E. https://doi.org/10.1086/318919
  27. Nature v.398 Chen,H.W.;Lanzetta,K.M.;Pascarelle,S. https://doi.org/10.1038/19251
  28. Nature v.408 Chen,H.W.;Lanzetta,K.M.;Pascarelle,S.;Yahata,N. https://doi.org/10.1038/35046031
  29. Nature v.303 Chernomordik,V.V.;Ozernoy,L.M. https://doi.org/10.1038/303153a0
  30. ApJ v.545 Cohen,J.G.;Hogg,D.W.;Blandford,R.;Cowie,L.L.;Hu,E.;Songaila,A.;Shopbell,P.;Richberg,K. https://doi.org/10.1086/317779
  31. ApJ v.486 Connolly,A.J.;Szalay,A.S.;Dickinson,M.;Subbarao,M.U.;Brunner,R.J. https://doi.org/10.1086/310829
  32. AJ v.115 Cowie,L.L.;Hu,E.M. https://doi.org/10.1086/300309
  33. AJ v.110 Cowie,L.L.;Hu,E.M.;Songaila,A. https://doi.org/10.1086/117631
  34. AJ v.112 Cowie,L.L.;Songaila,A.;Hu,E.M.;Cohen,J.G. https://doi.org/10.1086/118058
  35. astro-ph/0303646 Cuby,J.G.;Le Fevre, O.;McCracken,H.;Cuillandre,J.C.;Meneux,B. https://doi.org/10.1051/0004-6361:20030760
  36. ApJ v.570 Dawson,S.;Spinrad,H.;Stern,D.;Dey,A.;van Breugel, W.;De Vries, W.;Reuland,M. https://doi.org/10.1086/339579
  37. AJ v.122 Dawson,S.;Stern,D.;Bunker,A.J.;Spinrad,H.;Dey,A. https://doi.org/10.1086/321160
  38. ApJ v.498 Dey,A.;Spinrad,H.;Stern,D.;Graham,J.R.;Chaffee,F.H. https://doi.org/10.1086/311331
  39. ApJ v.531 Dickinson,M.(et al.) https://doi.org/10.1086/308508
  40. ApJ v.438 The fundamental plane correlations for globular clusters Djorgovski,S.G. https://doi.org/10.1086/187707
  41. ApJ v.560 Djorgovski,S.G.;Castro,S.;Stern,D.;Mahabal,A.A. https://doi.org/10.1086/324175
  42. Nature v.382 Djorgovski,S.G.;Pahre,M.A.;Bechtold,J.;Elston,R. https://doi.org/10.1038/382234a0
  43. ApJ v.299 Djorgovski,S.G.;Spinrad,H.;McCarthy,P.;Straus,M.A. https://doi.org/10.1086/184569
  44. AJ v.93 Djorgovski,S.G.;Straus,M.A.;Perley,R.A.;Spinrad,H.;McCarthy,P. https://doi.org/10.1086/114414
  45. ApJ v.560 Ellis,R.;Santos,M.R.;Kneib,J.P.;Kuijken,K. https://doi.org/10.1086/324423
  46. ApJ v.305 Fabian,A.C.;Arnaud,K.A.;Nulsen,P.E.J.;Mushotzky,R.F. https://doi.org/10.1086/164223
  47. AJ v.120 Fan,X.(et al.) https://doi.org/10.1086/301534
  48. AJ v.122 Fan,X.(et al.) https://doi.org/10.1086/324111
  49. AJ v.125 Fan,X.(et al.) https://doi.org/10.1086/368246
  50. ApJ v.562 Fardal,M.A.;Katz,N.;Gardner,J.P.;Hernquist,L.;Weinberg,D.H.;Dave,R. https://doi.org/10.1086/323519
  51. ApJ v.482 Francis,P.J.;Woodgate,B.E.;Danks,A.C. https://doi.org/10.1086/310667
  52. ApJ v.457 Francis,P.J.(et al.) https://doi.org/10.1086/176747
  53. ApJ v.486 Franx,M.;Illingworth,G.D.;Kelson,D.D.;van Dokkum, P.G.;Tran,K.V. https://doi.org/10.1086/310844
  54. ApJ v.568 Frye,B.;Broadhurst,T.;Benitez,N. https://doi.org/10.1086/338965
  55. AJ v.125 Fujita,S.S.(et al.) https://doi.org/10.1086/344806
  56. Nature v.381 Fukugita,M.;Hogan,C.J.;Peebles,P.J.E. https://doi.org/10.1038/381489a0
  57. MNRAS v.269 Fukugita,M.;Kawasaki,M. https://doi.org/10.1093/mnras/269.3.563
  58. ApJ v.455 Gallego,J.;Zamorano,J.;Aragon-Salamanca, A.;Rego,M.
  59. Erratum ApJ v.459 Gallego,J.;Zamorano,J.;Aragon-Salamanca, A.;Rego,M. https://doi.org/10.1086/309940
  60. A&A v.288 Giavalisco,M.;Macchetto,F.D.;Sparks,W.B. https://doi.org/10.1086/304548
  61. ApJ v.486 Gnedin,N.Y.;Ostriker,J.P. https://doi.org/10.1086/324466
  62. ApJ v.561 Goodrich,R.W.(et al.) https://doi.org/10.1086/324466
  63. ApJ v.142 Gunn,J.E.;Peterson,B.A. https://doi.org/10.1086/343101
  64. ApJ v.576 Haiman,Z. https://doi.org/10.1086/342610
  65. ApJ v.578 Haiman,Z.;Cen,R. https://doi.org/10.1086/312754
  66. ApJ v.537 Haiman,Z.;Spaans,M.;Quataert,E. https://doi.org/10.1086/312754
  67. Proc.ⅩⅤⅢ Moriond meeting Dwarf Galaxies and Cosmology Hammer,F.;Flores,H.;Thuan,T.X. (et al.)(eds) https://doi.org/10.1117/12.395498
  68. SPIE v.4008 Hayashino,T.(et al.) https://doi.org/10.1086/191522
  69. ApJS v.74 On the nature and implications of starburst-driven galactic superwinds Heckman,T.M.;Armus,L.;Miley,G.K. https://doi.org/10.1086/191522
  70. After the Dark Ages: When Galaxies were Young(the Universe at 2 < z < 5) Heckman,T.M.;S.Holt(ed.);E.Smith(ed.) https://doi.org/10.1051/0004-6361:20021898
  71. A&A v.402 Hippelein,H.(et al.) https://doi.org/10.1086/171374
  72. ApJ v.391 Hu,E.M. https://doi.org/10.1086/311506
  73. ApJ v.502 Hu,E.M.;Cowie,L.L.;McMahon,R.G. https://doi.org/10.1086/311506
  74. ASP conference Proceedings v.193 The Hy-Redshift Universe: Galaxy Fromation and Evolution at High Redshift Hu,E.M.;Cowie,L.L.;McMahon,R.G.;Andrew J. Bunker(ed.);Wil J. M. van Breugel(ed.) https://doi.org/10.1086/343105
  75. ApJ v.576 Hu,E.M.;Cowie,L.L.;McMahon,R.G.;Capak,R.;Iwamuro,F.;Kneib,J.P.;Maihara,T.;Motohara,K. https://doi.org/10.1038/382231a0
  76. Nature v.382 Hu,E.M.;McMahon,R.G. https://doi.org/10.1086/312205
  77. ApJ v.522 Hu,E.M.;McMahon,R.G.;Cowie,L.L. https://doi.org/10.1086/312205
  78. ApJ v.459 Hu,E.M.;McMahon,R.G.;Egami,E. https://doi.org/10.1086/169667
  79. ApJ v.368 Hu,E.M.;Songaila,A.;Cowie,L.L.;Steckton,A. https://doi.org/10.1038/28328
  80. Nature v.394 Hughes,D.H.(et al.) https://doi.org/10.1086/168811
  81. ApJ v.356 Hunstead,R.W.;Pettini,M.;Fletcher,A.B. https://doi.org/10.1086/168811
  82. PASJ v.33 Ikeuchi,S. https://doi.org/10.1002/app.1995.070550306
  83. PASJ v.55 Iwata,I.(et al.)
  84. Photometric Redshifts and High-Redshift Galaxies v.111 Januzzi,B.T.;Dey,A.;E.J.Weymann(ed.);L.J.Storrie-Lombardi(ed.);M.Sawicki(ed.);R.J.Brunner(ed.) https://doi.org/10.1086/344807
  85. AJ v.125 Kashikawa,N.(et al.) https://doi.org/10.1086/301139
  86. AJ v.118 Keel,W.C.;Cohen,S.H.;Windhorst,R.A.;Waddington,I. https://doi.org/10.1146/annurev.astro.36.1.189
  87. ARA&A v.36 Kennicutt,R.C.Jr. https://doi.org/10.1146/annurev.astro.36.1.189
  88. PASJ v.55 Kodaira,K.(et al.) https://doi.org/10.1086/308925
  89. ApJ v.536 Kudritzki,R.P.(et al.) https://doi.org/10.1038/381759a0
  90. Nature v.381 Lanzetta,K.M.;Yahil,A.;Fernandez-Soto,A. https://doi.org/10.1038/381759a0
  91. ApJ Lehnert,M.D.;Bremer,M.
  92. MNRAS v.169 Larson,R.B. https://doi.org/10.1046/j.1365-8711.1999.02247.x
  93. MNRAS v.303 Leibundgut,B.;Robertson,J.G. https://doi.org/10.1086/176947
  94. ApJ v.460 The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to Z approximately 1 Lilly,S.J.;Le Fevre,O.;Hammer,F.;Crampton,D. https://doi.org/10.1146/annurev.astro.39.1.19
  95. ARA&A v.39 Loeb,A.;Barkana,R. https://doi.org/10.1086/186120
  96. ApJ v.377 Lowenthal,J.D.;Hogan,C.J.;Green,R.F.;Caulet,A.;Woodgate,B.E.;Brown,L.;Foltz,C.B. https://doi.org/10.1086/186120
  97. ApJ v.481 Lowenthal,J.D.;Koo,D.C.;Guzman,R.;Gallego,J.;Phillips,A.C.;Faber,S.M.;Vogt,N.P.;Illingworth,G.D.;Gronwall,C. https://doi.org/10.1086/300180
  98. AJ v.115 Lu,L.;Sargent,W.L.W.;Barlow,T.A. https://doi.org/10.1086/172304
  99. ApJ v.404 Macchetto,F.;Lipari,S.;Giavalisco,M.;Turnshek,D.A.;Sparks,W.B. https://doi.org/10.1086/172304
  100. MNRAS v.283 Madau,P.;Ferguson,H.C.;Dickinson,M.E.;Giavalisco,M.;Steidel,C.C.;Fruchter,A. https://doi.org/10.1086/305523
  101. ApJ v.498 Madau,P.;Pozzetti,L.;Dickinson,M. https://doi.org/10.1051/0004-6361:20030265
  102. A&A v.402 Maier,C.(et al.) https://doi.org/10.1051/0004-6361:20030265
  103. PASJ v.53 Maihara,T.(et al.) https://doi.org/10.1086/338980
  104. ApJ v.565 Malhotra,S.;Rhoads,J.E. https://doi.org/10.1086/309025
  105. ApJ v.537 Manning,C.;Stern,D.;Spinrad,H.;Bunker,A. https://doi.org/10.1146/annurev.aa.31.090193.003231
  106. ARA&A v.31 McCarthy,P.J. https://doi.org/10.1086/154500
  107. ApJ v.207 Meier,D.L. https://doi.org/10.1086/311047
  108. ApJ v.491 Mendez,R.H.;Guerrero,M.A.;Freeman,K.C.;Arnaboldi,M.;Kudritzki,R.P.;Hopp,U.;Capaccioli,M.;Ford,H. https://doi.org/10.1117/12.395429
  109. Proc. SPIE v.4008 Fiber multi-object spectrograph(FMOS) for the Subaru Telescope Maihara,T.;Ohta,K.;Tamura,N.;Ohtani,H.;Akiyama,M.;Noumaru,J.;Kaifu,N.;Karoji,H.;Iye,M.;Dalton,G.B.;Parry,I.R.;Robertson,D.J.;Sharples,R.M.;Ren,D.;Allington-Smith,J.R.;Taylor,K.;Gillingham,P.R. https://doi.org/10.1086/305799
  110. ApJ v.501 Miralda-Escude,J. https://doi.org/10.1086/177992
  111. ApJ v.471 Miralda-Escude,J.;Cen,R.;Ostriker,J.P.;Rauch,M. https://doi.org/10.1086/310550
  112. ApJ v.478 Miralda-Escude,J.;Rees,M.J. https://doi.org/10.1086/305458
  113. ApJ v.497 Miralda-Escude,J.;Rees,M. https://doi.org/10.1086/305458
  114. A&A v.270 Moller,P.;Warren,S.J. https://doi.org/10.1001/jama.1993.03510010049016
  115. A&A v.330 Moller,P.;Warren,S.J.;Fynbo,J.U. https://doi.org/10.1046/j.1365-8711.2001.04008.x
  116. MNRAS v.321 Nakamoto,T.;Umemura,M.;Susa,H. https://doi.org/10.1086/307020
  117. ApJ v.515 Nakamura,F.;Umemura,M. https://doi.org/10.1086/318663
  118. ApJ v.548 Nakamura,F.;Umemura,M. https://doi.org/10.1086/318663
  119. PASJ v.52 Ohta,K.(et al.) https://doi.org/10.1086/300903
  120. AJ v.117 Ohyama,Y.;Taniguchi,Y.;Hibbard,J.E.;Vacca,W.D. https://doi.org/10.1086/300903
  121. PASJ v.54 Ohyama,Y.(et al.)
  122. PASJ v.591 Ohyama,Y.(et al.)
  123. ApJ v.255 Oke,J.B.;Korycansky,D.G. https://doi.org/10.1086/183436
  124. ApJ v.243 Ostriker,J.P.;Cowie,L.L. https://doi.org/10.1086/310375
  125. ApJ v.472 Ostriker,J.P.;Gnedin,N.Y. https://doi.org/10.1086/184030
  126. ApJ v.268 Physical properties of the intergalactic medium and the Lyman-alpha absorbing clouds Ostriker,J.P.;Ikeuchi,S. https://doi.org/10.1086/344476
  127. ApJ v.582 Ouchi,M.(et al.) https://doi.org/10.1086/344476
  128. ApJ v.456 The Serendipitous Discovery of a Group or Cluster of Young Galaxies at z2.40 in Deep Hubble Space Telescope WFPC2 Images Pascarelle,S.M.;Windhorst,R.A.;Driver,S.P.;Ostrander,E.J.;Keel,W.C. https://doi.org/10.1086/176025
  129. ApJ v.449 Pahre,M.A.;Djorgovski,S.G. https://doi.org/10.1086/149079
  130. ApJ v.147 Partridge,R.B.;Peebles,P.J.E. https://doi.org/10.1086/149079
  131. Principles of Physical Cosmology Peebles,P.J.E. https://doi.org/10.1086/321403
  132. ApJ v.554 Pettini,M.;Shapley,A.E.;Steidel,C.C.;Cuby,J.G.;Dickinson,M.;Moorwood,A.F.M.;Adelberger,K.L.;Giavalisco,M. https://doi.org/10.1086/304564
  133. ApJ v.486 Pettini,M.;Smith,L.J.;King,D.L.;Hunstead,R.W. https://doi.org/10.1086/308176
  134. ApJ v.528 Pettini,M.;Steidel,C.C.;Adelberger,K.L.;Dickinson,M.;Giavalisco,M. https://doi.org/10.1086/133479
  135. PASP v.106 Pritchet,C.J. https://doi.org/10.1086/133479
  136. The 37th HX conference v.115 The Hubble Space Telescope & The High Redshift Universe Rees,M.J.;N.R.Tanvir(ed.);A.Aragon-Salamanca(ed.);J.V.Wall(ed.)
  137. After the Dark Age: When Galaxies were Young v.13 Rees,M.J.;S.Holt(ed.);E.Smith(ed.) https://doi.org/10.1086/338477
  138. ApJ v.563 Rhoads,J.E.;Malhotra,S. https://doi.org/10.1086/317874
  139. ApJ v.545 Rhoads,J.E.;Malhotra,S.;Dey,A.;Stern,D.;Spinrad,H.;Januzzi,B.T. https://doi.org/10.1086/346272
  140. AJ v.125 Rhoads,J.E.(et al.) https://doi.org/10.1086/177131
  141. ApJ v.462 Sasaki,S.;Umemura,M. https://doi.org/10.1086/323432
  142. ApJ v.562 Shapley,A.E.;Steidel,C.;Adelberger,K.L.;Dickinson,M.;Giavalisco,M.;Pettini,M. https://doi.org/10.1086/373922
  143. ApJ v.588 Shapley,A.E.;Steidel,C.C.;Pettini,M.;Adelberger,K.L. https://doi.org/10.1117/12.395511
  144. SPIE v.4008 Sheinis,A.I.;Miller,J.S.;Bolte,M.;Sutin,B. https://doi.org/10.1086/341535
  145. ApJ v.576 Shioya,Y.;Taniguchi,Y.;Murayama,T.;Nishiura,S.;Nagao,T.;Kakazu,Y. https://doi.org/10.1086/341535
  146. PASJ v.54 Shioya,Y.(et al.) https://doi.org/10.1086/118018
  147. AJ v.112 Songaila,A.E.;Cowie,L.L. https://doi.org/10.1086/340079
  148. AJ v.123 Songaila,A.E.;Cowie,L.L. https://doi.org/10.1086/312325
  149. ApJ v.525 Songaila,A.E.;Hu,E.M.;Cowie,L.L.;McMahon,R.G. https://doi.org/10.1086/377226
  150. astro-ph/0302209 Spergel,D.N.(et al.) https://doi.org/10.1086/300659
  151. AJ v.116 Spinrad,H.;Stern,D.;Bunker,A.;Dey,A.;Lanzetta,K.;Yahil,A.;Pascarelle,S.;Fernandez-Soto,A. https://doi.org/10.1086/191493
  152. ApJS v.74 Steidel,C.C. https://doi.org/10.1086/305073
  153. ApJ v.492 A Large Scale Structure of Galaxies at Redshift Z approximately 3 and Its Cosmological Implications Steidel,C.C.;Adelberger,K.L.;Dickinson,M.;Giavalisco,M.;Pettini,M.;Kellogg,M. https://doi.org/10.1086/307363
  154. ApJ v.519 Steidel,C.C.;Adelberger,K.L.;Giavalisco,M.;Dickinson,M.;Pettini,M. https://doi.org/10.1086/308568
  155. ApJ v.532 Steidel,C.C.;Adelberger,K.L.;Shapley,A.E.;Pettini,M.;Dickinson,M.;Giavalisco,M. https://doi.org/10.1086/116287
  156. AJ v.104 Steidel,C.C.;Hamilton,D. https://doi.org/10.1086/116579
  157. AJ v.105 Steidel,C.C.;Hamilton,D. https://doi.org/10.1086/118019
  158. AJ v.112 Steidel,C.C.;Giavalisco,M.;Dickinson,M.;Adelberger,K.L. https://doi.org/10.1088/1538-4357/462/1/L17
  159. ApJ v.462 Steidel,C.C.;Giavalisco,M.;Pettini,M.;Dickinson,M.;Adelberger,K.L. https://doi.org/10.1086/318323
  160. ApJ v.546 Steidel,C.C.;Pettini,M.;Adelberger,K.L. https://doi.org/10.1086/117709
  161. AJ v.110 Steidel,C.C.;Pettini,M.;Hamilton,D. https://doi.org/10.1086/115755
  162. AJ v.101 Steidel,C.C.;Sargent,W.L.W.;Dickinson,M. https://doi.org/10.1086/309001
  163. ApJ v.537 Stern,D.;Bunker,A.;Spinrad,H.;Dey,A. https://doi.org/10.1086/316471
  164. PASP v.111 Stern,D.;Spinrad,H. https://doi.org/10.1038/35046027
  165. Nature v.408 Stern,D.(et al.) https://doi.org/10.1023/A:1017087201120
  166. Ap&SS v.269 Stockton,A.
  167. The Japan-Germany Workshop on Studies of Galaxies in the Young Universe with New Generation Telescopes Taniguchi,Y.;N.Arimoto(ed.);W.Duschul(ed.) https://doi.org/10.1086/114735
  168. AJ v.95 Taniguchi,Y.;Kawara,K.;Nishida,M.;Tamura,S.;Nishida,M.T. https://doi.org/10.1086/312557
  169. ApJ v.532 Taniguchi,Y.;Shioya,Y. https://doi.org/10.1086/312557
  170. Taniguchi, Y., & Shioya, Y. 2001, ApJ, 547, 146 https://doi.org/10.1086/318369
  171. ApJ v.547 Taniguchi,Y.;Shioya,Y. https://doi.org/10.1086/338101
  172. ApJ v.562 Taniguchi,Y.;Shioya,Y.;Kakazu,Y. https://doi.org/10.1086/374390
  173. ApJ v.585 Taniguchi,Y.(et al.) https://doi.org/10.1086/374390
  174. From Stars to Galaxies to the Universe Thommes,E. https://doi.org/10.1046/j.1365-8711.1998.01261.x
  175. MNRAS v.293 Thommes,E.;Meisenheimer,K.;Fockenbrock,R.;Hippelein,H.;Roser,H.J.;Becjwith,S. https://doi.org/10.1086/117577
  176. AJ v.110 Thompson,D.;Djorgovski,S.G. https://doi.org/10.1086/117576
  177. AJ v.110 Thompson,D.;Djorgovski,S.G.;Trauger,J. https://doi.org/10.1086/117576
  178. Proc. Nat. Acad. Sci. v.16 Tolman,R.C. https://doi.org/10.1086/319646
  179. ApJ v.550 Totani,T.;Yoshii,Y.;Iwamuro,F.;Maihara,T.;Motohara,K. https://doi.org/10.1086/323619
  180. ApJ v.558 Totani,T.;Yoshii,Y.;Iwamuro,F.;Maihara,T.;Motohara,K. https://doi.org/10.1086/322338
  181. ApJ v.559 Totani,T.;Yoshii,Y.;Iwamuro,F.;Maihara,T.;Motohara,K. https://doi.org/10.1086/305331
  182. ApJ v.495 Tresse,L.;Maddox,S.J. https://doi.org/10.1046/j.1365-8711.1998.01909.x
  183. MNRAS v.300 Tryer,M.A.;Ellis,R.S.;Milliard,B.;Donas,J.;Bridges,T.J. https://doi.org/10.1038/291289a0
  184. Nature v.291 Tytler,D. https://doi.org/10.1086/312080
  185. ApJ v.518 van Breugel, W.;De Breuck, C.;Stanford,S.A.;Stern,D.;Rttgering,H.;Miley,G. https://doi.org/10.1086/118020
  186. AJ v.112 van den Bergh, S.;Abraham,R.G.;Ellis,R.S.;Tanvir,N.R.;Santiago,B.X.;Glazebrook,K.G. https://doi.org/10.1086/177441
  187. ApJ v.465 Cosmological Blast Waves and the Intergalactic Medium Voit,G.M.
  188. A&A v.311 Warren,S.J.;Moller,P. https://doi.org/10.1086/311625
  189. ApJ v.505 Weymann,E.J.;Stern,D.;Bunker,A.;Spinrad,H.;Chaffee,F.H.;Thompson,R.I.;Storrie-Lombardi,L. https://doi.org/10.1146/annurev.aa.19.090181.000353
  190. ARA&A v.19 Weymann,R.J.;Carswell,R.F.;Smith,M.G. https://doi.org/10.1086/118105
  191. AJ v.112 Williams,R.E.(et al.) https://doi.org/10.1086/316854
  192. AJ v.120 Williams,R.E.(et al.) https://doi.org/10.1051/0004-6361:20000064
  193. A&A v.365 Wolf,C.(et al.) https://doi.org/10.1051/0004-6361:20021513
  194. A&A v.401 Wolf,C.(et al.) https://doi.org/10.1086/176523
  195. ApJ v.454 Wolfe,A.M.;Lanzetta,K.M.;Foltz,C.B.;Chaffee,F.H. https://doi.org/10.1086/176523
  196. ApJ v.358 Wolfe,A.M.;Lanzetta,K.M.;Turnshek,D.A.;Oke,J.B. https://doi.org/10.1086/309143
  197. ApJ v.538 Yahata,N.;Lanzetta,K.M.;Chen,H.W.;Fernandez-Soto,A.;Pascarelle,S.M.;Yahil,A.;Puetter,R.C. https://doi.org/10.1086/374371
  198. astro-ph/0212179 Yan,H.;Windhorst,R.A.;Cohen,S.H. https://doi.org/10.1086/117916
  199. AJ v.111 Yee,H.K.C.;Ellingson,E.;Bechtold,J.;Carlberg,R.G.;Cuillandre,J.C. https://doi.org/10.1086/163925
  200. ApJ v.301 Yoshii,Y.;Saio,H. https://doi.org/10.1086/304446
  201. ApJ v.485 Zhang,Y.;Anninos,P.;Norman,M.L.;Meiksin,A. https://doi.org/10.1086/304446

Cited by

  1. The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6 vol.57, pp.1, 2005, https://doi.org/10.1093/pasj/57.1.165
  2. Hubble Space TelescopeImaging and Keck Spectroscopy ofz≈ 6i‐Band Dropout Galaxies in the Advanced Camera for Surveys GOODS Fields vol.607, pp.2, 2004, https://doi.org/10.1086/383531
  3. PHOTOMETRIC PROPERTIES OF Lyα EMITTERS ATz≈ 4.86 IN THE COSMOS 2 SQUARE DEGREE FIELD vol.696, pp.1, 2009, https://doi.org/10.1088/0004-637X/696/1/546
  4. Old galaxies in the young Universe vol.430, pp.6996, 2004, https://doi.org/10.1038/nature02668
  5. New High-Redshift Galaxies atz= 5.8–6.5 in the Subaru Deep Field vol.57, pp.4, 2005, https://doi.org/10.1093/pasj/57.4.569
  6. A Dual-Narrowband Survey for Hα Emitters at Redshift of 2.2: Demonstration of the Technique and Constraints on the Hα Luminosity Function1 vol.124, pp.917, 2012, https://doi.org/10.1086/666528
  7. Spectroscopy ofz∼ 6i‐Dropout Galaxies: Frequency of Lyα Emission and the Sizes of Lyα‐emitting Galaxies vol.660, pp.1, 2007, https://doi.org/10.1086/512025
  8. The Abundance of Low‐Luminosity Lyα Emitters at High Redshift vol.606, pp.2, 2004, https://doi.org/10.1086/383080
  9. Lyα Radiation from Collapsing Protogalaxies. II. Observational Evidence for Gas Infall vol.649, pp.1, 2006, https://doi.org/10.1086/506244
  10. The Lyman alpha reference sample vol.587, 2016, https://doi.org/10.1051/0004-6361/201527373
  11. An Intermediate-Band Imaging Survey for High-Redshift Lyman Alpha Emitters: The Mahoroba-11 vol.57, pp.6, 2005, https://doi.org/10.1093/pasj/57.6.881
  12. The evolution of galaxies from primeval irregulars to present-day ellipticals vol.440, pp.7084, 2006, https://doi.org/10.1038/nature04553
  13. A Subaru Search for Lyman$\alpha$ Emitters atz= 5.8 with an Intermediate-Band Filter vol.56, pp.4, 2004, https://doi.org/10.1093/pasj/56.4.597
  14. A Lyman α emitter at z = 6.5 found with slitless spectroscopy vol.422, pp.1, 2004, https://doi.org/10.1051/0004-6361:20040189
  15. Galactic winds from primeval galaxies vol.311, pp.1-3, 2007, https://doi.org/10.1007/s10509-007-9533-5
  16. 6: Early GMOS/Gemini Data from the GLARE Project vol.604, pp.1, 2004, https://doi.org/10.1086/383523
  17. < 6 vol.621, pp.1432-0746, 2019, https://doi.org/10.1051/0004-6361/201834164