DOI QR코드

DOI QR Code

Development of Two-layer Electrode for Direct Methanol Fuel Cell

직접 메탄올 연료전지의 이층막 전극 개발

  • Jung, Doo-Hwan (Advanced Fuel Cell Research Team, Korea Institute of Energy Research) ;
  • Hong, Seong-Hwa (Advanced Fuel Cell Research Team, Korea Institute of Energy Research) ;
  • Peck, Dong-Hyun (Advanced Fuel Cell Research Team, Korea Institute of Energy Research) ;
  • Song, Rak-Hyun (Advanced Fuel Cell Research Team, Korea Institute of Energy Research) ;
  • Shin, Dong-Ryul (Advanced Fuel Cell Research Team, Korea Institute of Energy Research) ;
  • Kim, Hyuk-Nyun (Fuel Cell Team/Battery Research Institute, LG Chem, Ltd.,)
  • Published : 2003.02.01

Abstract

The performance of the Direct Methanol Fuel Cell (DMFC) using multi-layer electrode, which prepared by various anode catalysts and Nafion membranes, was studied for reducing the amount of the metal catalyst loaded in the MEA system. The amount of the catalyst used in this experiment was $3-4 mg/cm^2$ in cathode and $1-2 mg/cm^2$ in anode, respectively. The best performance was to be $230 mS/cm^2$ of MEA3 at $90^{\circ}C$ and 2 bar in this experiment. However, the overall performance of the DMFC was maintained almost the same compared to the general commercial catalyst systems.

전지 성능을 저하시키지 않고 연료극 및 공기극의 귀금속 촉매량을 줄이기 위하여 다층막 전극을 이용한 직접메탄을 연료전지의 성능특성을 조사하였다. 다층막 전극 즉, 연료극과 공기극에 사용된 촉매사용량과 나피온 막의 종류를 변화시키며 최종성능을 측정하였다 본 실험에서 사용된 촉매량은 연료극이 $3-4mg/cm^2$ 공기극이 $1-2mg/cm^2$이다. 본 실험에서는 나피온 115를 사용한 MEA3의 $90^{\circ}C$, 2기압에서 측정 결과 최대 전력밀도인 $230mW/cm^2$를 나타내었다. 이 결과는 현재 시판되고 있는 상용전극과 거의 같은 수준의 성능을 보여주고 있는 반면, 금속 촉매의 양은 기존의 상용전극과 비교하여 약 $50\%$ 정도 감소된 것이다.

Keywords

References

  1. J. Power Sources H. Dohle;H. Schmitz;T. Bewer;J. Mergel;D. Stolten
  2. J. Power Sources v.84 A. Heinzel;V. M. Barragan https://doi.org/10.1016/S0378-7753(99)00302-X
  3. J. Electroanal. Chem. v.461 S. Wasmus;A. Kuver https://doi.org/10.1016/S0022-0728(98)00197-1
  4. J. Power Sources v.84 B. Rohaland;V. Plzak https://doi.org/10.1016/S0378-7753(99)00315-8
  5. J. Electrochem. Soc. v.146 T. J. Schmidt;H. A. Gasteiger;R. J. Behm https://doi.org/10.1149/1.1391761
  6. J. Phys. Chem. v.97 H. A. Gasteiger;N. Markovic;P. N. Ross, Jr.;E. J. Cairns https://doi.org/10.1021/j100148a030
  7. J. Electrochem. Soc. v.139 A. Parthasarathy;B. Dave;S. Srinivasan;A. J. Appleby;C. R. Martin https://doi.org/10.1149/1.2069469
  8. J. Electroanal. Chem. K. A. Friedrich;K. P. Geyzers;A. J. Dickinson;U. Stimming
  9. J. Power Sources v.84 K. A. Starz;E. Auer;Th. Lehmann;R. Zuber
  10. J. New Mat. Electrochem. Systems v.2 C.-H. Lee;C.-W. Lee;D.-H. Jung;C.-S. Kim;D. -R. Shin
  11. J. Electrochem. Soc. v.146 T. Toda;H. Igarashi;H. Uchida;M. Watanabe https://doi.org/10.1149/1.1392544
  12. 한국에너지공학회지 v.7 정두환;이창형;신동열
  13. Catalysis today v.38 A. Hamnett https://doi.org/10.1016/S0920-5861(97)00054-0
  14. J. Electrochem. Soc. v.142 B. R. Rauhe, Jr.;F. R. McLarnon;E. T. Cairns https://doi.org/10.1149/1.2044547
  15. J. Power Sources v.113 C. Lim;C. Y. Wang https://doi.org/10.1016/S0378-7753(02)00541-4

Cited by

  1. Activating needle coke to develop anode catalyst for direct methanol fuel cell vol.20, 2016, https://doi.org/10.5714/CL.2016.20.047