DOI QR코드

DOI QR Code

Effect of Granulation and Compaction Methods on the Microstructure and Its Related Properties of SOFC Anode

과립형성 및 성형방법에 따른 SOFC 음극의 미세구조 및 특성

  • Heo, Jang-Won (Nano-Materials Research Center, Korea Institute of Science & Technology) ;
  • Lee, Jong-Ho (Nano-Materials Research Center, Korea Institute of Science & Technology) ;
  • Hwang, Jin-Ha (Department of Materials Science & Engineering, Hongik University) ;
  • Moon, Joo-Ho (Department of Ceramic Engineering, Yonsei University)
  • 허장원 (KIST 나노재료연구센터) ;
  • 이종호 (KIST 나노재료연구센터) ;
  • 황진하 (홍익대학교 신소재/화공시스템공학부) ;
  • 문주호 (연세대학교 세라믹공학과)
  • Published : 2003.02.01

Abstract

It is well known that the anode substrate of anode-supported type SOFC should have high electrical conductivity and high gas permeability to minimize the polarization loss of the cell performance during operation. In this study, we made anode substrates of SOFC with two different methods, which gave different anode microstructures, especially different pore structures with each other. We performed electrical and microstructural characterization of Ni/YSZ cermet anode via extensive measurements of its electrical conductivity and gas permeability combined with adequate image analysis based on quantitative stereological theory

음극지지형 고체산화물 연료전지의 전극성분은 연료전지 성능의 주된 감쇄요인으로 지적되고 있는 분극저항을 줄이기 위해 높은 전기전도도와 가스투과도등이 요구되어지고 있다. 본 연구에서는 SOFC음극의 성능에 영향을 주는 음극의 미세구조, 특히 음극의 기공구조를 다르게 형성시키기 위해 두 가지 서로 다른 과립형성 방법을 이용하여 음극을 제조하고 이에 따라 기판의 기공구조가 어떻게 바뀌는지 또 그로 인해 기판의 미세구조 및 전기전도도가 어떠한 영향을 받는지 관찰하였다 또한 미세구조에 대한 정량적인 화상분석을 통해 기판의 미세구조적인 인자들과 전극특성간의 상관관계를 분석하였다.

Keywords

References

  1. J. Am. Ceram. Soc. v.76 Ceramic Fule Cell N. Q. Minh https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  2. Solid State Ionics v.148 J.-H. Lee;H. Moon;H.-W. Lee;J. Kim;J.-D. Kim;K.-H. Yoon https://doi.org/10.1016/S0167-2738(02)00050-4
  3. Solid State Ionics v.132 D. Somwonis;F. Tietz;D. Stoever https://doi.org/10.1016/S0167-2738(00)00650-0
  4. J. Kor. Ceram. Soc. v.39 J.-W. Heo;D.-S. Lee;J.-H. Lee;J.-D. Kim;J. Kim;H.-W. Lee;J.-H. Moon https://doi.org/10.4191/KCERS.2002.39.1.086
  5. J. Kor. Ceram. Soc. v.37 H. Moon;H.-W. Lee;J.-H. Lee;K.-H. Yoon
  6. J. Mater. Res. v.12 D. Simwonis;A. Naoumidis;F. J. Dias;J. Linke;A. Morpoulou https://doi.org/10.1557/JMR.1997.0207
  7. J. Kor. Ceram. Soc. v.37 H. Moon;H.-W. Lee;J.-H. Lee;K.-H. Yoon https://doi.org/10.1557/JMR.1997.0207

Cited by

  1. Surface modified LiFePO4/C nanocrystals synthesis by organic molecules assisted supercritical water process vol.194, pp.2, 2009, https://doi.org/10.1016/j.jpowsour.2009.06.042
  2. High-Rate LiFePO4 Electrode Material Synthesized by a Novel Route from FePO4 · 4H2O vol.16, pp.16, 2006, https://doi.org/10.1002/adfm.200600442
  3. Characteristics of Li0.98Cu0.01FePO4 prepared from improved co-precipitation vol.468, pp.1-2, 2009, https://doi.org/10.1016/j.jallcom.2008.01.072
  4. Synthesis and electrochemical performance of LiFePO4/C prepared by a new method vol.147, pp.11-12, 2008, https://doi.org/10.1016/j.ssc.2008.07.013
  5. Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries vol.45, pp.2, 2010, https://doi.org/10.1016/j.materresbull.2009.09.031
  6. One-pot, glycine-assisted combustion synthesis and characterization of nanoporous LiFePO4/C composite cathodes for lithium-ion batteries vol.195, pp.9, 2010, https://doi.org/10.1016/j.jpowsour.2009.11.054
  7. Study of spin-phonon coupling in LiFe1 − xMnxPO4olivines vol.46, pp.11, 2015, https://doi.org/10.1002/jrs.4736
  8. Microwave Synthesis of LiFePO 4 from Iron Carbonyl Complex vol.142, 2014, https://doi.org/10.1016/j.electacta.2014.07.118
  9. Synthesis and characterization of LiFePO4/C nanocomposites vol.8, 2010, https://doi.org/10.1016/j.phpro.2010.10.008
  10. Porous micro-spherical LiFePO4/CNT nanocomposite for high-performance Li-ion battery cathode material vol.5, pp.47, 2015, https://doi.org/10.1039/C5RA05988G
  11. Synthesis and characterization of nano-LiFePO4/carbon composite cathodes from 2-methoxyethanol–water system vol.459, pp.1-2, 2008, https://doi.org/10.1016/j.jallcom.2007.05.031