DOI QR코드

DOI QR Code

솔-젤 합성에 의한 직접 메탄올 연료전지용 고분산 Pt-Ru/C 음극 촉매의 제조

A Study on Sol-gel Preparation of Pt-Ru/C Anode Catalysts for Direct Methanol Fuel Cells

  • 이강희 (한국과학기술연구원 청정기술연구센터) ;
  • 김일곤 (한국과학기술연구원 청정기술연구센터) ;
  • 박태진 (한국과학기술연구원 청정기술연구센터) ;
  • 서동진 (한국과학기술연구원 청정기술연구센터)
  • Lee, Kang-Hee (Clean Technology Research Center, Korea Institute of Science and Technology) ;
  • Kim, Il-Gon (Clean Technology Research Center, Korea Institute of Science and Technology) ;
  • Park, Tae-Jin (Clean Technology Research Center, Korea Institute of Science and Technology) ;
  • Suh, Dong-Jin (Clean Technology Research Center, Korea Institute of Science and Technology)
  • 발행 : 2003.02.01

초록

직접 메탄을 연료전지의 음극 촉매로 사용되는 Pt-Ru/C를 솔-젤법을 이용하여 크라이오젤 및 에어로젤 형태로 제조하였다. 탄소의 원료가 되는 유기물의 종류에 따라 B종의 촉매를 제조하였으며 XRD분석에 의해 금속이 탄소담체 위에 고분산되어 있음을 확인하였다. 초임계건조, 탄화. 환원 공정을 거쳐 완성된 에어로젤 촉매의 전극 활성은 Cyclic voltametry를 이용한 half cell test를 통하여 평가하였다. 그 중 Phloroglucinol-Formaldehyde(PF) 형의 촉매가 가장 우수한 활성을 보였으며 내구성 또한 양호하였다.

Cryogel and aerogel Pt-Ru/C were synthesized by the sol-gel process for the electrooxidation of methanol. From XRD analysis, it was found that the catalysts had highly dispersed Pt-Ru alloys on carbon support although high temperature treatments have been conducted. Electrocatalytic activities of 3 type aerogel catalysts were investigated in half cell experiments by cyclic voltammetry. Among them, Phloroglucinol-Formaldehyde(PF) type catalyst shows the highest activity. From the results of deactivation test for each catalysts, the aerogel catalysts are found to have excellent durability compared with those prepared by colloidal method.

키워드

참고문헌

  1. J. Electroanal Chem. v.283 B, J, Kennedy;A. Hammett https://doi.org/10.1016/0022-0728(90)87395-Z
  2. J. Chem, Soc. Farad. Trans. v.76 B. D. McNicol;P. A. Attwood;R. T. Short;J. A. van Amstel https://doi.org/10.1039/f19807602310
  3. J. Elctroanal Chem. v.271 M. Watanabe;S. Seagust;P. Stonehart https://doi.org/10.1016/0022-0728(89)80076-2
  4. Catal. Today v.38 A. Hamnett https://doi.org/10.1016/S0920-5861(97)00054-0
  5. J. Chem. Soc. Farad. Trans. v.88 S. A. Campbell;R. Parsons https://doi.org/10.1039/ft9928800833
  6. J. Elctroanal Chem. v.7 J. O'M Bockris;H. Wroblowa https://doi.org/10.1016/0022-0728(64)80123-6
  7. T. Freelink;W. Vischer
  8. J. Catal. v.74 H. Miura;R. D. Gonzalez
  9. React. Kinet. Catal. Lett. v.32 P. Villamil;A. Lopez;R. Gomea https://doi.org/10.1007/BF02068354
  10. J. Phys. Chem. v.97 H. A. Gasteiger;N. Makvic;P. N. Ross Jr.;E. J. Cairns https://doi.org/10.1016/0013-4686(94)85177-8
  11. J. Catal. v.154 V. Radmilovic;H. A. Gasteiger;P. N. Ross Jr. https://doi.org/10.1007/BF02068354
  12. J. Electroanal Chem. v.229 M. Watanabe;M. Uchida;S. Motoo. https://doi.org/10.1021/j100148a030
  13. J. Electrochem. Soc. v.147 Y. Takasu;Y. Fujiwara;Y. Murakami;K. Sasaki;M. Oguri;T. Asaki;W. Sugimoto https://doi.org/10.1006/jcat.1995.1151
  14. Electrochem. Acta. v.40 T. Freelink;W. Vischer;A. P. Cox;J. A. R. Van Veen https://doi.org/10.1016/0022-0728(87)85156-2
  15. J. Mol. Catal. v.52 F. Garin;G. Maire https://doi.org/10.1149/1.1394080
  16. Electrochim. Acta v.39 J. A. R. Van Veen https://doi.org/10.1016/0013-4686(94)85177-8

피인용 문헌

  1. Interfacial reactions between graphite and propylene carbonate-based solution after pre-generating a solid electrolyte interface vol.19, pp.sup1, 2015, https://doi.org/10.1179/1432891715Z.0000000001406