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SOME INEQUALITIES FOR THE CSISZAR 3-DIVERGENCE

S.5. DRAGOMIR

ABSTRACT. Some inequalities for the Csiszar ®-divergence and applications for the
Kullback-Leibler, Rényi, Hellinger and Bhattacharyya distances in Information The-
ory are given.

1. INTRODUCTION

Given a convex function ® : Ry — R, the ®-divergence functional

(1.1) Is (p,q) = ng@ (%)

was introduced in Csiszar [3], [4] as a generalized measure of information, a “distance
function” on the set of probability distributions P". The restriction here to discrete
distribution is only for convenience, similar results hold for general distributions.

As in Csiszér [4], we interpret undefined expressions by

. 0\
@ (0) Jim (1), 0@ (6) =0,

o (¢t

o<1>(9) —  lim @(-‘i) —atim 2@ .50
0 e—0+ £ t—oo 1

The following results were essentially given by Csiszar and Korner [5].

Theorem 1. If & : Ry — R is conver, then I (p,q) is jointly convez in p and q.

The following lower bound for the ®—divergence functional also holds.
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Theorem 2. Let ® : Ry — R, be convex. Then for every p,q € R, we have the
inequality:

n
n E D
: =1
(1.2) Is (p,g) 2 ) _ai® | 5
=1 > G
=1

If ® is strictly convez, equality holds in (1.2) iff

(1.3) h_p_ =t

91 q2 qn
Corollary 1. Let @ : Ry — R be conver and normalized, t.e.,
(1.4) d(1)=0.

Then for any p,q € RY with

n n
(1.5) dSopi=Y g
i=1 i=1
we have the inequality
If ® is strictly conver, equality holds in (1.6) iff p; = q; for all i € {1,...,n}.

In particular, if p, g are probability vectors, then (1.5) is assured. Corollary 1 then
shows, for strictly convex and normalized ® : Ry — R, that

(1.7) Is (p,q) >0 for all p,q € P".

The equality holds in (1.7) iff p = q.

These are “distance properties”. However, I is not a metric: It violates the triangle
inequality, and is asymmetric, i.e, for general p,q € R?, I (p, q) # Is (¢, ).

In the examples below we obtain, for suitable choices of the kernel ®, some of the
best known distance functions I used in mathematical statistics [15]-[17], information
theory [2]-[22] and signal processing [13], [20].

Example 1. (Kullback-Leibler) For
(1.8) ® (t) :=tlogt, t > 0;

the ®—divergence is

(1.9) Is (p,q) = gpi log (%) :

the Kullback-Leibler distance [18]-[19].



SOME INEQUALITIES FOR THE CSISZAR $-DIVERGENCE

Example 2. (Hellinger) Let

(1.10) (1) = (1—\/7?)2, t>0.

DN | =

Then Iy gives the Hellinger distance [1]

n
(1.11) In (p,0) = 3 3 (VB — V@),
i=1

which is symmetric.
Example 3. (Renyi) For o > 1, let
(1.12) ¢ (t) =1t% t>0.
Then

n
(L.13) Is (p,q) = > _pia; %,

i=1
which is the a—order entropy [21].
Example 4. (x’—distance) Let
(1.14) ®(t)=(t—1)%, t>0.
Then

n 2

Pi— Q

(1.15) loi0) = - P10

is the x°>—distance between p and q.

Finally, we have

65

Example 5. (Variation distance). Let ®(t) = |t —1], t > 0. The corresponding

divergence, called the variation distance, is symmetric,

n
Is (p,q) = Y _ Ipi — ail-
i=1

For other examples of divergence measures, see the paper [16] by J.N. Kapur, where

further references are given.
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2. OTHER INEQUALITIES FOR THE CSISZAR ®-DIVERGENCE

We start with the following result.
Theorem 3. Let ® : R, — R be differentiable convez. Then for all p,q € R} we have
the inequality
2

21) (1) (P - Qu) <o (0,0) — Qu® (1) < T (%p) I (9,0)

where P, := Z p;i >0, Qn = Z ¢ > 0 and ® : (0,00) = R is the derivative of ®.

If @ is strwtly convez and pz,qz > 0 (i =1,...,n), then the equality holds in (2.1) iff
pP=4q.

Proof. As @ is differentiable convex on Ry, then we have the inequality

(2.2) ' (y) (y—2) > 2(y) — () > 2 (2) (y — 2)

for all z,y € Ry.
Choose in (2.2) y = & and z = 1, to obtain

s o) (E)ee(z) ez

for all i € {1,...,n}.
Now, if we multiply (2.3) by ¢; > 0 (z = 1, ...,n) and sum over : from 1 to n, we can
deduce

)
oy

> =@ (2) 2 0o (r.0) - QB (1) 2 9 (1) (B - Q)
i=1 ¢
and as
- pi p’

> (pi—a) @ (—) = Iy (—m) —Ig (p,q)

— gi q
the inequality in (2.1) is thus obtained.

The case of equality holds in (2.2) for a strictly convex mapping iff z = y and so the

equality holds in (2.1) iff % =1 for all 1 € {1,...,n}, and the theorem is proved. I

Remark 1. In the above theorem, if we would like to drop the differentiability con-
dition, we can choose instead of @' (x) any number | = 1 (z) € [ (z),®', (z)] and
the inequality will still be valid. This follows by the fact that for the convex mapping
®: Ry — Ry we have

z)(z—y) 2 (@) -2 =Ly (z—y), =yc(0,00);

where 11 (y) € [ (y), ¥, (y)] and Iz (z) € [®' (x),P, ()], where ®' is the left and
®'_ is the right deriative of ® respectively. We omit the details.

The following corollary is a natural consequence of the above theorem.
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Corollary 2. Let ® : R, — R be convez and normalized. If ® (1) (P, —Qn) 2 0
then we have the positivity inequality

2
(2.4 0< Lo (i) < o (L) = Lo ().
The equality holds in (2.4) for a strictly convex mapping ® iff p = q.

Remark 2. Corollary 2 shows that the positivity inequality (1.6) holds for a larger
class of (p,q) € R than that one considered in Corollary 1, namely, for (p,q) €
{R? xR : P, = Qn}.

We have the following theorem as well.

Theorem 4. Assume that ® is differentiable convez on (0,00). If p9), ¢ (j =1,2)
are probability distributions, then for all X € [0,1] we have the inequality

25) 0 < Ma(pV,qW) + (1 =N Ts (p2,4?)
—1s (0 + (1= X) ¢V 2 + (1 =) ¢)

PV p®

n @ (1) 2)
AP +(1-ng? ¢V ¢

where ®' is the derivative of ®.

IN

Proof. Using the inequality (2.2) , we may state
(2) M 4?0
26) @(ml+u )(J(m +(1 M&Vgﬁ)
qu +(1-XA)g A+ (1= ) q;
>\Pz N p? p"
® @ O
qu N g q;
< > (Ap + (1= p? B pE”)
¢ A+ (1= ¢ qgl)
and
(27) (A e p§2)> (Apm LU pﬁ)
Ad, ¢\ A (1= 52) q@@)
o2 (2)
® (A (2)) - (p@))
)\ q qi

pE /\pl + (1= N p” 3 p _
¢ /\ql +(1—A) g qEQ)

v

v

Vv

v
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Multiply (2.6) by A¢'” and (2.7) by (1 — A)¢{” and add the obtained inequalitics to
get

n O+ (1= W+ (1 -np2 Y
(2.8) Z‘I"( =2 Mg, T

=\ a-ng? Y Y

i %

(- 2q? wh+a-0p® PP
% (1) @~ @
Mg+ (1—X)g; q;

1

(3

v

s (3 + (1= )P, 2qD + (1= 4?)

~Mo (p“),q(”) — (1= 1e (p(z),q@))

" T g (PN (0 =2p”  p
> a7 @ @O
i=1 q; )\qi + (1 - A) q; q;

(2) <1 pt? At 4+ (1- ) p” pgz)

(1N | 5 @ @~ @]

q, A+ (1 =A)g; g;

AqV (XPEI) O =Np pﬁ”)

Y

However,

i il A

M+ (1-0g” gl

i

+(1-2g” )+ (1 =np? Y
4 D) @ @
A+ (L=XN)g; q;

i

CONC) INC
AI=X Ty Ty | AG=N
q; q; q; q;
= T @ T 0 O
which shows that the first part in (2.8) is zero.
In addition,
®n @)
A1-N| Py P
WORE L -np pl! ¢tV ¢
A =g g A+ (1= 0 g
and
1 @
(1) (2) (2) AL=2) pfl) pé2)
(1= 3 ® (Api + (=X P 4 4% |
P+ =g g AV + (1= 2 q”
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and then, the second part in (2.4) is
p(l) p(2)

n ql(l) qZ(Q)

~A(1-2) ol E ) o [ )],
=1 /\qz +(1-A)g @ qgl) q§ )

which proves the theorem. I

Remark 3. The first inequality in (2.5) is actually the joint convezity property of
Is (-,-) which has been proven here in a different manner than in [5].

3. APPLICATIONS FOR SOME PARTICULAR ®—DIVERGENCES

Let us consider the Kullback-Leibler distance given by (1.9)

(3.1) KL (p,q) = gp g (%),

Consider the convex mapping ® () = —logt, ¢+ > 0. For this mapping we have the

Csiszdr ®—divergence
oo [ (5)]

(32) Iq) (p’Q)
= ;qilog (%) =KL(q,p).

The following inequality holds.

Proposition 1. Let p,q € R*. Then we have the inequality

(3.3) Qn— P, < KL(q,p) <Zp——Qn
7

The case of equality holds iff p = q.

Proof. Since ® (t) = —logt, then ®' (t) = ~1, £ > 0. We have

p? Z" 1
Iq;.' <‘7P> = Di | — ,272 " = —QTH
q = | ( ) L

i
qi Dq
n [ 1 n q2
Io(pg) = D ¢ |—5|=—2 5
i=1 L g im1 P
and then, from (2.1), we get
no2

—(Pu=Qu) <KL(gp) < —Qu+ Z‘;
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which is the desired inequality (3.3).
The case of equality is obvious taking into account that —log is a strictly convex
mapping on (0,00). 1

The following result for the Kullback-Leibler distance also holds.

Proposition 2. Let p,q € R™. Then we have the inequality

(3-4) Po—@n <KL(p,q) < P —Qn+ KL(q,p) - KL (paz—:;)-
The case of equality holds iff p = q.
Proof. As ® (t) = tlog(t), then &' (t) = logt + 1. We have

Is (p,q) = KL(p,q),

2 2 2
p p p
Y (E‘vp> = Ilog(~)+1 (_q—ap> =P, + Ilog(-) (;7])) .

As we know that I_ ., (p,q) = KL (q,p) (see (3.2)), then we have that
2 2
p b
Tiowr. ———,p) = KL <p,—>.
log(+) ( q q

Is (p,@) = ligg()+1 (P, 9) = Qn + Log(y (P, q)
Qn — KL(q,p)

and then, by (2.1), we can state that

In addition, we have

2

and the inequality (3.4) is obtained.
The case of equality holds from the fact that the mapping ® (¢) = tlogt is strictly
convex on (0,00). 1

Now, let us consider the a—order entropy of Rényi (see (1.13))

n
(3.5) Do (p,q) =Y pig, " a>1
=1

and p,q € R}

We know that Rényi’s entropy is actually the Csiszar ®—divergence for the convex
mapping ® (1) =%, a > 1, ¢t > 0 (see Example 3).

The following proposition holds.
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Proposition 3. Let p,q € R'}. Then we have the inequality

(36)  a(Pa—Qu) < Da(p,0) — Qn < [Da(pa) — Da (47577
The case of equality holds iff p = q.

Proof. Since @ (t) = t*, then @' (t) = at®~ L.
We have

() - Snfe ()]

a—1
.
= aZpi(&g —anl “pf = aDy (p,q)
i=1

Iy (p,q) = iqz [w (%)a_l}

2-a 1
- azpa lqsa—apa(qa )

and

p
Using the inequality (2.1), we have

(P —Qn) < Do(pq) —Qna [Da (,q) = Do (q%’%)]

and the inequality (3.6) is proved.

The case of equality holds since the mapping ® (t) = t* is strictly convex on (0,00)
ora>1. 8 :

Consider now the Hellinger discrimination (see for exzample [16])

1 (p,q) = 12\/' V@)
i=1

where p,q € R}.

We know that Hellinger dlscrlmmatlon is actually the Csiszar ®—divergence for the
convex mapping ® (t) = 5 (Vt — 1) .

We may state the following proposition.

Proposition 4. Let p,q € R. Then we have the inequality

L[S (/2 2)]

(3.7) 0<h?(p,q) < 2[P — Qn] +

The equality holds iff p = q.
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Proof. As () = } (VE—1)", we have /(1) = } — 5l and @ (§) = k- 5 >0

(t € (0,00)) which shows that @ is indeed strictly convex on (0, 00).
We also have:

Is(p,q) = W (p9),

2 n
p 1 1
II —_— = . - —
2 (q,p) E Di 9 o2

IcI)’(p»CI) = ZQi z—ﬁ —5
= “A/

and as ® (1) = 0 and ® (1) = 0, then, by (2.1) applied for ® as above, we deduce (3.7).
The case of equality is obvious by the strict convexity of ®. I

Consider now the Bhattacharyya distance (see for example [16])
n
B (p7 q) = Z vV Pidi,
i=1

where p,q € R
We know that for the convex mapping f (t) = —v/t, we have

zqz[

We may state the following proposition.

Proposition 5. Let p,q € R. Then we have the inequality

_ _ L~ 5 [P
(Qn Pn)SQn B(paQ)§2;QZ(\/; \/;)

The case of equality holds iff p = q.

(3.8)

N
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Proof. As ® (1) = —+/%, t > 0, then & (¢) —Q—fa,nd@"()—

shows that @ (- ) is strictly convex on (0, 00). We also have

p? = 1 1 — 1
Io\—=,p) = ) pi|- =—5 2 VPiti=—5B(p,9),
q A ? 2 & 2

YNGR t > 0, which also

1 < 1 1< q;
Iy (pq) = ‘52%7:—52% —
¢

and as ®' (1) = —3, ® (1) = —1, then by (2.1) applied for the mapping @ as defined
above, we deduce (3.8).

The case of equality is obvious by the strict convexity of ®. I
4. FUurRTHER BOUNDS FOR THE CASE WHEN P, = @y

The following inequality of Griiss type is well known in the literature as the Biernacki,
Pidek and Ryll-Nardzewski inequality (see for example [24]).

Lemma 1. Let a;, b; (i = 1,...,n) be real numbers such that

(4.1) a<a; <A b<b;<B foralie{l,..,n}.

Then we have the inequality:
1 n
<= H (1—5 H) (A—a)(B—1b),

R T ~_Zal Zb
=1 =

where [x] denotes the integer part of x.

The following inequality holds.

Theorem 5. Let & : R, — R, be differentiable conves. If p,q € Rt are such that
P, =@, and

(4.3) m<pi—q <M, i=1,.,n
(4.4) O<r§&§R<oo, i=1,..,n,
q

then we have the inequality

@5 0<Io(a) - Que () < [1] (1 . [g]) (M —m) (& (R) - & (7).

Proof. From (2.1) we have

(46) 0< Io (p,q) - Z p—a)® ().

4
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Applying (4.2) we have

n

(4.7) %;(pi_(h)q), (%)—:21 1 ;@( ’)
< s (-5 [5]) vr-m @@ -2 6)

as the mapping ®' is monotonic nondecreasing, and then

o' (r) < &' (“) <& (R) forallie{l,..,n}.
g |
n

As 3 (p; — qi) =0, we deduce by (4.6) and (4.7) the desired result (4.5). 1
=1 :

The following inequalities for particular distances are valid.
(1) If p,q € R} are such that the conditions (4.3) and (4.4) hold, then we have the

inequalities

(4.8) 0<KL(g,p) < [3] (1—%[3]) (M—m)RT‘Ri,
and

(19) o< KL< [3] (1-1[3]) r - m) frog (£)].

(2) If p,q are as in (4.3) and (4.4), we have the inequality (@>1)
i n . l ﬁ _ a—1 _ _a-1
(4.10) 0 < Do (p,q) ~ Qn < [5] (1 - [2])(M m) (Rt — po1).

(3) If p,q are as in (4.3) and (4.4), we have the inequality

(4.11) 0 < h2 (p, )_;[’;] (1-%-[%])(M—m)%@.

(4) Under the above assumptions for p and ¢, we have

(4.12) 0< Qn— B (p, )_;[2] (1—%[3])(M—m)\/—§%.

Using the following Griiss’ weighted inequality.

n
Lemma 2. Assume that a;, b; (1 =1,....,n) are as in Lemma 1. If ¢; >0, > ¢ =1,
i=1
then we have the inequality

Z gia;b; — Z qia; Z qib;

(4.13) 1< (A—a)(B-b).

i
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We may prove the following converse inequality as well.

Theorem 6. Let & : Ry — Ry be differentiable convez. If p,q € R’} are such that

(4.14) 0<r<P<R<oo, i=1,..,n,
q;
then we have the inequality
1
(4.15) 0<Ip(pq) — Qu®(1) < 7 (R—7) [/ (R) - & (r)]
Proof. From (2.1) we have
7
(4.16) 0 < B -0 <Y ti-w ()
1

As @’ (-) is monotonic nondecreasing, then

o' (r) < &' (1—’5) < & (R) forallie{l,..n}.
qi

Applying (4.13) for a; = % -1, b, =9 (%), we obtain

o) B B
< L(R-7)[2(R)- @ ()
and as

then, by (4.16) and (4.17) we deduce (4.15). B
The following inequalities for particular distances are valid.

(1) If p, q are such that P, = Q, and (4.14) holds, then

(R— r)2
(4.18) 0< KL(g,p) < R

and

1 R
(4.19) 0<KL(gp) <7 (R- r)? In (?) :
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(2) With the same assumptions for p, ¢, we have

(4.20) 0 < Da(p,g)—Qn< %(R ) (R =Y (a2 1),
(4.21) 0 < Ah%(p,q) < é(R— r) [%\/E

and
(4.22) OSQn—B(p,q)S%(R—T)%T—ﬁ-

Remark 4. Any other Griiss type inequality can be used to provide different bounds

for the difference
n
A=Y mi-a)e (2).
i=1 !

We omit the details.
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