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STABLE NUMERICAL DIFFERENTIATION: WHEN IS IT
POSSIBLE?

ALEXANDER G. RAMM AND ALEXANDRA SMIRNOVA

ABSTRACT. Two principally different statements of the problem of stable numerical
differentiation are considered. It is analyzed when it is possible in principle to get a
stable approximation to the derivative f' given noisy data f5. Computational aspects
of the problem are discussed and illustrated by examples. These examples show the
practical value of the new understanding of the problem of stable differentiation.

1. INTRODUCTION

In many applications one has to estimate a derivative f' given the noisy values of
the function f to be differentiated. As an example we refer to the analysis of photo-
electric response data (see [11]). The goal of that experiment is to determine the
relationship between the intensity of light falling on certain plant cells and their rate
of uptake of various substances. Rather than measuring the uptake rate directly, the
experimentalists measure the amount of each substance not absorbed as a function of
time, the uptake rate being defined as minus the derivative of this function. As for
the other example, one can mention the problem of finding the heat capacity ¢, of a-

gas as a function of temperature 7. Experimentally one measures the heat content
T

g(T) = [ ¢p(7)dr, and the heat capacity is determined by numerical differentiation.
T

One coan give many other examples of practical problems in which one has to differ-
entiate noisy data. In navigation problems one selects the direction of the motion of a
ship by the maximum of a certain univalent curve, called the navigation characteristic.
This direction can be obtained by differentiation of this curve. Since the navigation
characteristic is communicated with some errors, one has to differentiate it numerically
in order to find its maximum. In [18], p. 94, the shape of a convex obstacle is found by
differentiation of a support function of this obstacle. The support function is found from
the experimentally measured scattering data, and by this reason the support function
is noisy. In [19], pp.81-92, optimal estimates for the derivatives of random functions
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are obtained. In [22], p. 438, numerical differentiation of functions, contaminated by
random noise is discussed. The noise has zero mean value and finite variance, and is
identically distributed independently of the point z. It is proved that in this case the
error of an optimal formula of numerical differentiation can be made O(p —0.25¢) where
p is the number of observation points and e is the error for a noise which is non-random
(see the precise formulation of the result in [22]).

The differentiation of noisy data is an ill-posed problem: small (in some norm)
perturbations of a function may lead to large errors in its derivative. Indeed, 1f one
takes f5 = f+6s1n(52) #' € L(0,1), then ||fs — flloo = & and [|f§ — f'lloc = 3 80
that small in L% (0,1)-norm perturbations of f result in large perturbations of f' in
L*(0,1)-norm.

Various methods have been developed for stable numerical differentiation of f given
I, ||fs — fll < 6. We mention three groups of methods:

1) regularized difference methods with a step size h = h(J) being a regularization
parameter, see [13], where this idea was proposed for the first time, and [16], [19], [20].
As an example of such a method one may consider:

Hfs(z +h) — f5(2)), 0<z<h,
(1.1) Ry felz) = ?L(fd T+ h) — f5($ —-h)), h<z<1l-h,
w(fs(z) = fs(z — h)), 1-h<z<1l, h>0.

If f5 € L°(0,1), and f € W?2P(0,1), where W™P(0,1) is the Sobolev space of
functions whose n-th derivative belongs to L?(0, 1), ||fs — f||p £ 0, then

|\ Rugsy f5 — f'llp < 1 Ruisy(fs — Nllp + 1 Rne f — fllp
2% Nayh
SRt

where N3, is an estimation constant: ||f"||, < Nap. The error in the interval A <

(1.2)

z < 1 — h can be estimated slightly better (by a quantity % + M) In this paper by

|- |[p we denote || -||s(0,1)- The right-hand side of (1.2) attains the absolute minimum
1

SNayp at h = hop(d) := 2 (%)5, while if one uses the error estimate for the
P

1
interval h < 2 < 1 — h, then one gets the absolute minimum /20Ny, at h = <1\?26,,) 2

When the function f € W3P(0,1), one can modify (1.1) near the ends so that it has
the order O(h?) of the error of approximation as h — 0, and results in an algorithm of
order 62/3. For example one can take

—1{7(4f5($ +h) = fs(z + 2h) = 3f5(x)), 0 <z <2h,
(L3)  Ruefo(z) = ?(fé z +h) — fs(z = h)), 2h <z <1-2h,
= (3f5(x) + fs(x — 2h) —Afs(z — h)), 1 -2h <z <1.
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The difference methods use only local values of the function fs, which is natural when
one estimates a derivative, and these methods are very simple, which is an advantage.

2) An alternative approach is first to smooth fs by a mollification with a certain
kernel, for example with a Gaussian kernel, or to use a mollification by splines, and
then to differentiate the resulting smooth approximation, see ([27], [10], [7]). If one

applies mollification with the Gaussian kernel wy(z) := ﬁ exp (_Z_;)v r€eR, h>0,
then (Myg) : L?(0,1) = L*(0,1),

1
(1.4) (Mag) fla) = (w # f) o) = [ wh = 3) e
where * stands for the convolution, f5; € L?(0,1), and ||f5 — f|l2 < §. Assume that
f € HY(0,1) with f(0) = f(1) =0 and ||f"||2 < N2o. One has

(1.5) (M) f5 — f'll2 < 1My (fs — F)ll2 + (M) f = Fll2

From the Cauchy inequality the first term in the right-hand side of (1.5) can be esti-
mated as follows:

(M) (fs = Dlrz0,0) = llwh * (fs = Fllzz,) < llwhx (fs — 2w

26
(1.6) < wpllpr @l fs = fllz00) < e
because [|w}|[r1g) = —2 [ w},(s)ds = 2w, (0) = h\/— By a partial integration one gets:
0
1 L
A1) (hr D)) = [ il =) fds = [wnle = ) (s = (wn s )
0 0

To complete the argument one uses the inequality
(L.8) wn * 2 = 2|l 2y < DI L200,1)

for every z € H'(0,1) with z(0) = z(1) = 0. Here the above functions z are extended
from [0, 1] to R by zero.
To verify (1.8) define the Fourier transform by

(F2)(t) := s)etds, teR.

1 /
—= [ 2(
V2T

-0
Using Parseval’s equation, one gets:

lwn * 2 — 2l 2 ) = | F(wh * 2 — 2)|| o) = ||(V2rFwy — 1) F 2| 2w

H— \/_fquh -1)F %t(\/ﬂ}"wh - 1)

||Z'HL?(0,1)~
L= (R)

L2 ()
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Since

1
op(t) = E(l —V2rFwp) = -z}t. [1 - e—h2t2/4] , teR,

2

and =¢ < 2, for all 7 > 0, estimate (1.9) yields inequality (1.8). Thus from (1.7)
and (1.8) one obtains

(1.10) (M) f = fll2 < llwn x f* = f'll2 < hNap.

Finally, combining (1.5), (1.6) and (1.10) one gets

(M) f5 = f'll2 < W + ANy = €3.

The choice h = hg2(d) = | [~ \/— leads to the estimate ey < 24/2/y/m\/0N2 .

3) The third group of methods uses variational regularization for solving ill-posed
problems ([12], [26]). One applies variational regularization to a Volterra integral equa-
tion

(1.11) Au(z) = /u(s)ds - f(@).

For example, if the noisy data f5 are given, ||fs — f|l2 < d, then one minimizes the
functional
Fy(u) = || Au — f5I[3 + allull3

or

Fn(u) = || Au = fol|3 + ol [u™[3, m >0,
where o > is a regularization parameter. One proves that for a suitable choice of «,
a = «(6), the above functionals have a unique minimizer us and |jus — f'||2 = 0 as
0 — 0. An optimal choice of the regularization parameter « in this approach is a
nontrivial problem. Some methods for choosing @ = «(§) are presented in [9], [4].

The above methods have been discussed in the literature (see, for example, [5], [6], [1],
[2], [8]), and their analysis is not our goal. Our goal is to study two principally different
statements of the problem of stable numerical differentiation, and to understand when
it is possible in principle to get a stable approximation to f’ given noisy data fs. In [25]
a new notion of regularizer is introduced. Our treatment of the stable differentiation
is an example of application of this new notion. In [24] a regularization method for
unbounded linear and nonlinear operators is discussed.

2. STATEMENTS OF THE PROBLEM OF STABLE NUMERICAL DIFFERENTIATION

First, we recall some standard definitions. The problem of finding a solution u to
the equation

(2.1) Aluy=f, A: X =Y,
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where X and Y are Banach spaces, A is an operator, possibly nonlinear, is well-posed
(in the sense of J.Hadamard) if the following conditions hold:

a) for every element f € Y there exists a solution u € X3

b) this solution is unique;

¢) the problem is stable under small perturbations of the initial data in the sense:
Hw — ’LL]]X -0 if ||f5 — f”y — 0, where A(U5) = f(;.

If at least one of the conditions a), b) or ¢) is violated, then the problem is called
ill-posed. The problem of numerical differentiation can be written as

T

(22)  Afw) = /u(s)ds —f A:X=IP0,1) - LP(0,1), f(0)=0.
0

We study the cases p = 2 and p = oo in detail. Problem (2.2) is solvable only if fle X.
So, condition a) is not satisfied, condition c) is not satisfied either, and condition b) is
satisfied. Therefore, problem (2.2) is ill-posed.

Practically, one does not know f and the only information available for computational

processing is fs together with an a priori information about f, for example, one may
know that f € K} ,, where

23) K ={f: feW0,1), I/l < Nap < o0, |lfs = fllp <},
a=0a=1orl<a<2 Forl<a<?2

(2.4) W@, = sup 1f"(2) = f'W)llp

eye(01),ay T —yl®

, a=14+ay, 0<ag<1l.

Therefore given § > 0 and f5 one has to estimate f' for any f € ICg’ . and the problem
of stable numerical differentiation has to be understood in the following sense:

Problem I:
Find a linear or nonlinear operator Ry ;) such that

(2.5) sup [|Rpyfs — fllp <n(8) =0 as =0,
ekt ,

where n(8) is some positive continuous function of & € (0,d0), and do > 0 is some
number.

The traditional formulation of the problem of stable numerical differentiation is dif-
ferent from the above:

Problem 1I:
Find a linear or nonlinear operator Ry sy such that
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(2.6) sup [R5 — f'llp <n(d, f) =0 as =0,
f(;EBg’f

where Bg’f ={fs: Ifs — fllp < é} and f € le;’a is fixed,
or even in a weaker form:

Find Rh(g) such that
(2.7) Rno)fs — f'llp <n(d,f) =0 as 60

for o fixed f € ICM and fixed family f5 € B 5t

Note the pr1nc1pal difference in the statements of Problems I and II of stable
numerical differentiation: in Problem I the data are {fs, Nap}, f is arbitrary in the set
/Cf;7 .» and we wish to find a stable approximation of f7, !, which is valid uniformly with
respect to f € ICp On the other hand, in Problem II it is assumed that f € IC
fixed and the approx1mat10n of f' is either uniform with respect to f5 € B ;or holds
for a particular family fs € B . Since in practice we do not know f and we do know
just one family fs, Problem I i 1s much more important practically than Problem II. In
this paper we show when one can obtain, in principle, a stable approximation of f'in
the sense formulated in Problems I and II, and when it is not possible, in principle, to
obtain such an approximation of f’ from noisy data.

The main result on the stable numerical differentiation problem in the first formula-
tion is stated in Theorem 2.1:

Theorem 2.1. There does not exist an operator Ry @ LP(0,1) — LP(0, 1), linear or
nonlinear, for p =2 and p = oo, such that inequality (2.5) holds for a < 1. Ifa <1,
then

2.8 R f R — flip > ¢ >0, = 2,00.

( ) ’}/(5,0, Rh((;) Lp(éri)*)l/p(o 1) le’ilga || h((S) f5 f Hp = P

Ifa>1 and p > 1, then there does exist an operator Ry such that (2.5) holds. For
exzample, one can use Ry s defined in (1.1) with

1
( 20 )“, a=14+ap, 0<ay<l,

aoNa,p

1
5 \2 _
Z(N_)’p> , a=2.

The error of the corresponding differentiation formula is

(2.9) h = ha(d) ==

ag
26 —
(210) 7](6) = G(N 7[1) (”O) . a = 1 + a:(), O < a( < 1,
(5N2 p) a=2.

N\»—
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The main result on the stable numerical differentiation problem in the second for-
mulation is stated in Theorem 2.2:

Theorem 2.2. If a = 1, then there exists an operator Rys) L?(0,1) — L2(0,1), such
that inequality (2.6) holds.

The principal difference is: for a = 1 one cannot differentiate stably in the sense
formulated in Problem I. In the sense of Problem II stable differentiation is possible in
principle. However the approximation error, ||Ry(s)f — f'|l2, cannot be estimated, and
this error 7(4, f) may go to zero arbitrarily slowly as § — 0. This is in sharp contrast
with the practically computable error estimate given in (2.10). Moreover, no matter
how small the error bound § > 0 is, there exists a function f € lCil, such that not only
Rysy (with any fixed function h(6)), defined in (3.14), but any other operator Ry,
linear or nonlinear, will satisfy the inequality ||Rpys)f — f'll2 > ¢ > 0, where ¢ > 0 does
not depend on 4. This follows from (2.8).

3. PROOFS

Proof of Theorem 2.1
First, consider the case p = oco. Take

(3.1) filz) = ——%:L(ac —2h), 0<z<2h

Extend f1(x) from (0,2h) to (2h, 1) by zero and denote the extended function by f (x)
again. Then f;(z) € W>(0,1) and the norms || f(9)||, @ = 0 and a = 1 are preserved.
Define fo(z) = —fi(z), = € (0,1). Note that

Mh?
(32) Sup ‘fk(m)l = o k=1,2.
x€(0,1)
Choose h = hoo 1= hoo(0) := %3—, so that
2
(3.3) M;‘w _s,

Then for f5() = 0 one has: ||fy— fslloc = 8, k = 1,2. Let (Ry(5)f5)(0) = (By5)0)(0) :=
b. One gets

% .— inf sup ||Ry, — Moo > inf max||R - f]
Voo = b felc%ll wo)fs = flloc > jnt k:l,Q” n@) S5 — Frllo

> Ri’?(g) g&})ﬁ I|Rh,(5)f6(0) — [ (0)floo

(3.4) = ;mﬂf{ max {|b — Mhoo!, |b+ Mhoo|} = Mhe.
€
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If hoo = /2, then Mho = V20M. If a = 0, then (3.2) implies that fi € K53

k= 1,2, with Ng o := % = §. For any fixed § > 0 and Ny, = J the constant M
in (3. 1) can be chosen arbltrary Therefore inequality (3.4) proves that (2.5) is false in
the class K55 and, in fact, v55 — 0o as M — oco.

Suppose now that f € K. One has

(3.5) Hf{IIoo=Hf£||oo=0 sup | M(z — hoo)| = Mhoo
ST 4loo
Thus, for given § and Nj o one can take h = heo = ,/2]\%, so that ||fx — fsllo = 0,

k = 1,2, holds, and then take M so that Nj o = V20M. For these hoo and M the
functions fy € K39, k=1,2. One obtains from (3.4) the following inequality

(3.6) Y59 > Nijo >0 as §—0,

which implies that estimate (2.5) is false in the class K33.
Now let p = 2. For fi defined in (3.1) one has

(3.7) ||f1”L2 (0,2h) = \/%th’ Hf{HLZ(O,Zh) = \/th%-

Extend fi(z) from (0,2h) to (2h, 1) by zero and denote the extended functlon fi(z)
again. Then fi € WH2(0,1), [[fillr2,1) = — et MAh%, and ||f}]|2 0,1) = — ¢;Mh?. Define
folz) = —fi(z), f5(x) =0, z € (0,1).

Choose h = hg := (C M) to satisfy the identity

U\h\:

5
(3.8) caMhi =9,
then ||fx — fsllr20,1) =9, k¥ =1,2. Thus

Y = }%nf sup || Rn(s Vo = fll2 > 1n(f maXHRh yfo — frll2

— f _ ! !
géIEIL' maX{H‘P f1|l27 |‘90+f1||2}7
where £:={¢: p=cf] +9, ¢ L f'}. Therefore

oz nt s { =PI+ IWIE, Jas Pl + IviB

cER,pLf!
= inf max {|1 — c|||fillz, 11+ clllfilla} = lIfill2

3 2 0 \3
(3.9) =coMh; = coM>s (C—> .
1
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If a = 0, then (3.8) yields fj € IC(%’O, k=1,2, with Nog := cth% = ¢, and one gets
’y§,0—>ooasM->oo.
2
Given constants 6 and N 2 (in the case a = 1), one takes h = hy := (ch) ® so that

3
l|fx — fsll2 = 6, and then takes M so that CQM% (i) * = Ny 2. With this choice of hy

C1

and M the functions f; € ’Cg,p k =1,2, and one obtains from (3.9)
(3.10) V312 Ni2>0 as 60

Finally, consider a € (1,2), p > 1. For the operator Ry(;) defined by (1.1) one gets
using the Lagrange formula:

| By fs — I'llp < By (fs — Dllp + |1 Rua £ — fllp

20
(3.11) < W + Na’phao.

Minimizing the right-hand side of (3.11) with respect to h € (0, 00) yields

N 1 ag

26 2 ANCE

he(d) = - , 1(0) = a(Ngp) 20 , a=14ap, 0<a <l
aoNgp ap

I

The case a = 2 is treated in the introduction (see estimate (1.2)). So one arrives at
(2.9)-(2.10). This completes the proof. : O

Proof of Theorem 2.2

We give two proofs based on quite different methods.

The first proof uses the construction of the regularizing operator Rjs) defined in
(1.1). The right-hand side of the error estimate of the type (1.2) is now replaced by
E(h) := 2}—? + w(h), where w — 0 as h — 0, provided that ¢ = 1. Minimizing £ with
respect to h for a fixed §, one obtains a minimizer h(6) — 0 as § — 0 and the error
estimate E(h(6)) — 0 as § — 0. Therefore one gets (2.6). Alternatively, if one chooses
h1(6) —= 0 as § — 0, such that 32 = w(hy), then E(h1(8)) < 2w(hi(6)) — 0. The first
proof is completed. a

Remark 3.1 The statement of Theorem 2.2 with (2.6) replaced by (2.7) is obvious:
since f is fixed, one may take Ry fs = f'. This is, of course, of no practical use
because f' is unknown.

The second proof is longer, but the ideas of this proof have an advantage of being
applicable to a wide variety of ill-posed problems [21], and not only to stable numerical
differentiation. By this reason we give this proof in detail ([23]). In order to show that
for a = 1 there exists an operator R : L?(0,1) — L?(0,1), ( L2(0,1) is a real Hilbert
space) such that (2.6) holds we will use the DSM ( dynamical systems approach) (see
[23], [21]). This approach consists of the following steps:
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Step 1. Solve the Cauchy problem:

(3.12) b = —[Av+ h(t)v — f5], ©(0) = vy € L*(0,1),
where A is defined in (2.2), p=2, 0:= ‘é’g, |fs — fI] < 6 and
(3.13) h(t) € CM0,4+00), h(t) >0, h(t)\O, :2(8) — 0 ast— +oo.

Step 2. Calculate v(t;), where 5 > 0 is a number such that ¢; — +o0o and 71—(‘2—5—) — 0 as
4 —» 0. Then

(3.14) Ry5)fs = v(ts)

and

(3.15) sup ||Rps)fs — f'll2 £n(d,f) > 0asd =0
f(sGBéf

with 7(6, f) given by (3.29) below and f € ICil.
To verify (3.15) consider the problem

(3.16) Aw+ h(t)w — f =0.

Since A is monotone in L?(0,1):

e

for any ¢ € L?(0,1) and h(t) > 0, the solution w(t) t
admits the estimate
(3.18) (A(w = f1),w = ") + h(O)Jwll} = ht)(w, f), w2 < N

Differentiate (3.16) with respect to ¢ (this is possible by the implicit function theorem)
and get

0
(3.16) exists, is unique, and

(319)  [A+h(OI6 = —h(tyw, [l < ‘hit;‘ wll> < ‘Zig‘m )
where (3.18) was used. Denote

(3.20) 2(t) = v(t) — w(t).

From (3.16) and (3.12) one obtains ,

(3.21) H(t) = - —[A+h()Iz+ f5— [, 2(0) = vo —w(0).

Multiply (3.21) by z(t) and get
(3.22) (2,2) = —(, 2) — (Az, 2) — h(t)(z,2) + (fs — [, 2).
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Let ||z(t)||2 := g(t), then (3.17) and (3.22) imply

(3.23) 99 < (]l + 8)g — h(t)g?.
Since g > 0, from (3.23) and (3.19) it follows that
(329 § < Nia )+ 0= hDglt), 9(0) = llon = wO)]|
So,
t t .
(325) g <e b o)+ [ (Nu 'Zg‘ ! 5) o
0

o0
(3.26) / h(t)dt = o,
0
Indeed, (3.13) implies ‘Thz’— < ¢, ¢ = const > 0, so d%% <ec, h(Lt) - h(l()) <ct, hg—t) < ¢p+ct,

cp := [R(0)]7! > 0, and h{t) > Coict. Conclusion (3.26) follows.
If one chooses t = t5 so that t; - +o0 and W%g_) — 0 as  — 0, then by (3.25) and

(3.26), using L'Hospital’s rule one obtains
(3.27) Ho(ts) —w(ts)|le :=g(ts) = 0 as § — 0.

The existence of the solution to (3.12) on [0, +oc) is obvious, since equation (3.12) is
linear with a bounded operator.

We claim that
(3.28) llw(ts) — f'lls =0 as 6—0

For convenience of the reader this claim is established below. Equations (3.13), (3.25),
(3.27), and (3.28) imply:

tg
— [ h(s)ds
sup |[v(ts) — f'll2 < |lw(ts) — flla +e © 9(0)+
f&EBgﬁf
P i ‘
(3.29) + / e (NM\ZE;;) + (5) dr| :=n(8,f)—=0 as 6 —0.
) ,

Let us now prove (3.28). Because f' € L?(0,1) and f(0) = 0, one can rewrite (3.16)
as A(w — f") + h(t)w = 0. This and the monotonicity of A imply h(t)(w,w — ') <0,
so, since h(t) > 0, one gets (w,w — f') < 0, and |Jw||2 < |[f'|l2. Thus w converges
weakly in L2(0,1) to some element ¢, w — ¢ as t — oc. Because A is monotone, it is
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weakly closed, that is w — 9 and A(w — f') — 0 imply A(¢p — f') =0, s0 ¢ = f' and
w — f'. The inequality (w,w — f’) < 0 can be written as [Jw — f'||3 < (f', f' — w),
and (f',w— f') — 0 because w — f' — 0. Therefore the claim is proved and the second
proof is completed. O

4. NUMERICAL ASPECTS

Figures 1-4 illustrate the impossibility to differentiate stably a function, which does
not have a bound on f{®, a > 1. If one takes the function

Moo 46
(4.1) flz):= (T - No) 0z <4d
0, 46 <z <1,

and fs =0, then
f@yef{f: Fewh0,1), |/l < Nioos IIf = folloo < 6},

and any formula of numerical differentiation will give error not going to zero as 6 — 0,
because, by (3.6), one has:

inf ||Ry(d — Moo > N1 oo
Rl}fl(é)H n(0)fs — f'lloo = N1,

In Figure 1 one can see f(z) given by (4.1) with § = 0.1 and N} o = 1:

flz) = { 25z(z = 04),  0<w<04

(42) 0, 04<z<1.

Figure 2 presents

(4.3) Fl(z) = { 5r—1, 0<z2<04

0, 04<z <1
Figure 3 shows the case § = 0.01 and N o = 0.5:

f@%={&%dx~mm’ 0<z<0.08

(44) 0, 0.08 <z <1.

The derivatives are given in Figure 4:

p 12.5z — 0.5, 0<z<04
(4.5) f“*‘{o, 04 <x<l.
Even if the bound on f(® in some norm is given, one can experience difficulties with
stable differentiation. Namely, if & is fixed and N, , is very large, then h,y in finite
difference scheme (1.1) is very small, and practitioners might not have sufficiently many
observation points. Another difficulty is: the estimated error €, in such a case is very
big and does not give any information regarding the accuracy of computations. This is
illustrated in Table 1 below for the function f(z) = sin((7z)") and d = 0.1.
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Figure 1

Figure 2

0.5

—

0 0.2 0.4

0.6 0.8

f(x)=2.5x(x~0.4), 0<x<0.4, T __ (x)=0

delta

Figure 3

1 0

02 04 06 08 1
f(x)=5%x-1, O<x<0.4

Figure 4

0.5

0.5 —

—_—

0% 02 04 06 08 1 055 02 04 06 08 1
f(x)=6.25x(x-0.08), 0<x<0.08, fde“a()()=0 fI(X)=12.5X—0.5, 0<x<0.08
Table 1.

n N2,p Fopt €a,p
511.24-10° | 5.67-107* | 7.04- 102
10 1 3.27-101 | 1.11-107°¢ | 3.62-10°
15 4.41-10% | 3.01-1079 | 1.33- 108
20 1 7.94-10% | 7.10-10712 | 5.63 - 1010
2512.62-10%7 | 1.24-10714 | 3.24 - 10*3
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Figure 5 Figure 6

1500 1500

1000 1000

_ 500 500

S
= 0 0
3

-500 -500

-1000 -1000

-1500 —— -1500

o] 02 04 08 08 1 0 0.2 04 0.6 0.8 1
derivative computed with hom=0.00056778 exact derivative
Figure 7 Figure 8

200 100

100 50
S S

g 0 & 0
° ©
° ©

-100 -50

-200 -100

0 0.2 04 0.6 08 1 0 0.2 04 0.8 0.8 1
derivative computed with h=0.005 derivative computed with h=0.01

Figures 5-8 show the exact and computed derivatives of f(z) = sin((wz)®). The
derivatives of this function were computed in the presence of the noise function

(4.6) e(x) = 6(cos(2z) + cos(32?))/2,

and with different step sizes. One can see in Figure 5 that for hgy the computed
derivative is very accurate. However as h grows, the accuracy decreases.
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