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THE STRONG STABILITY OF ALGORITHMS FOR SOLVING THE
SYMMETRIC EIGENPROBLEM

ALICJA SMOKTUNOWICZ

ABSTRACT. The concepts of stability of algorithms for solving the symmetric and
generalized symmetric-definite eigenproblems are discussed. An algorithm for solving
the symmetric eigenproblem Az = Az is stable if the computed solution z is the exact
solution of some slightly perturbed system (A + E)z = Az. We use both normwise
approach and componentwise way of measuring the size of the perturbations in data.
If E preserves symmetry we say that an algorithm is strongly stable (in a normwise or
componentwise sense, respectively). The relations between the stability and strong
stability are investigated for some classes of matrices.

1. INTRODUCTION

In [11] D.J.Higham and N.J.Higham introduced new definitions of structured back-
ward error and condition number for linear systems. They stated: “When perturbations
to a symmetric matrix are measured using the 2-norm it makes little difference to the
backward error or to the condition number whether symmetry is enforced or not*.

In this work we show that it holds for the symmetric eigenproblem and symmetric—
definite pencils . Our result is similar to obtained by J.R.Bunch, J.W.Demmel and C.V
Loan [4] but we prove it in another way. We consider also a componentwise way of
measuring the size of the perturbations in data. For a recent account of the perturbation
theory in numerical linear algebra see [12].

An algorithm for solving the symmetric eigenproblem Az = Az is said to be numer-
ically stable if it gives a computed solution z # 0 satisfying a relation (A + E)z = Az
with || E || of order p || E ||, where p is the relative computer precision. If all | e;; | are
of order p | a;; | then an algorithm is said to be numerically stable in a componentwise
sense.
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When we solve the symmetric eigenvalue problem Az = Az, it is often important to
force symmetry of the perturbed matrix A + E. It can help us to obtain more realistic
bounds for computed eigenvalues and eigenvectors ([1], [8], [12]).

We will say an algorithm for solving the symmetric eigenproblem is strongly stable
for a class of matrices A if for each A € A, the computed solution z to Az = Az satisfies
Az = )z, where A € A and A is close to A (Cf. [3]).

We summarize the contents of the paper. In Section 2 we prove that any stable
algorithm for solving the symmetric eigenproblem Az = Az on the class symmetric
matrices is also strongly stable on the same matrix class. Next we extend these results
to symmetric-definite pencils Az = ABz. No such result holds for componentwise
approach (Cf. [11] for similar problem for linear systems). However, we prove in Section
3 that it is true for some classes of matrices. We stress that only a little is known about
componentwise stability of algorithms for solving the symmetric eigenproblem (Cf. [1],
[8]). In Section 4 we give a generalization of Weyl's inequality.

2. THE STRONG NORMWISE STABILITY

In [9] J.E.Dennis and J.J.More proved the following theorem.

THEOREM 2.1 (Dennis, More). Let A = AT € R™® and let r = b— Az, where z # 0.
Then
T T T
6A:rz +ar rzzzT
2Tz (2T2)?

is the smallest symmetric matriz in the Frobenius norm for which the vector z satisfie3
(A+06A)z=h.

J.R.Bunch, J.W.Demmel and C.V Loan ([4]) showed that if A = AT and E is any
matrix for which (A + E)z = b, z # 0, then there exists a symmetric AA such that
(A+AA)z=b, || AA |o<] E || and || AA | p< VE || E .

If we take b = )z in the above then we obtain the similar result for the symmetric
eigenvalue problem Az = Az. However here is another way to show this.

THEOREM 2.2. Let A = AT € R™™® qnd let r = Az — Az, where A\€E R and 0 # z €
IR™. Then

rzt + 2rt rlz

1 A= ]
(1) 2Tz 2Tz
is the smallest symmetric matriz in the 2- norm for which the vector z satisfies (A +
0A)z = Az.

Moreover, if (A+ E)z = Az where | E ||l2< € || A ||2, then we have || 64 ||2<|| E |]2<
el Al

Here I denotes the n by n identity matriz.
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Proof. It is clear that §Az = r, hence (A + A)z = Az. Note that if (A + E)z = Xz
for any matrix E , then r = Ez, 50 || 7 |2<|| E ||2]| z |2 and || E [|2> ”—”T'ﬁ What is left

e
is to show that || 4 ||o= |_|[Z".H2

izl
Let H = HT € R™™ be any orthogonal matrix such that Hz =| z ||2 e1, where
er = [1,0,...,0]". For example, we can take Householder's transformation (Cf. [10
1,(15]).
For simplicity of notation we write y = [y1, 2, .- .,Ya], Where
H
(2) Y = HéAH ,y= —— .
Il 2 [|2

It is easily seen that Y = YT and
(3) Y =yel + eyl — il .
The characteristic polynomial of Y is equal to
det(Y — AI) = (=1)" Ly + W 2H{ @i+ ...+ vh) — M.
From this it follows that || Y ||a=|| v ||2. Therefore .

64 Jla=] ¥ flo= 112
| 2 |l2

This finishes the proof. B
By a similar argument we can prove the following theorem.

THEOREM 2.3. Let A € R™® and B € R™™ be symmetric matrices with B positive
definite. Assume that (A + E)z = \M(B + F)z where E € R™, F e R™, A€ R and
0#£z€R". Letra=FEz and rg = Fz . Then

rAzT + Z’I"£ ri’;z
0A = T -5 I
2tz 2tz
and
rBzT + zrg rgz
0B = T -oT
2tz 2tz

are symmetric and satisfy (A + §A)z = MNB + §B)z where || A |2<|| E |2 and
| 6B [l2<|| F |l2-

Proof. Note that 64z = r4 and 6Bz = rg. Hence (A + 64)z = (A + E)z and
(B +0B)z = (B + F)z. This implies that (A + dA)z = A(B + ¢B)z.
Because

@ Joa ta= LAy g, L

it is evident that || §A [|2<|| E ||2 and || 6B [|2<|| F ||o- ®
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3. THE STRONG COMPONENTWISE STABILITY

In order to obtain a sharper perturbation bounds we use componentwise analysis.
Note that matrix | A | is the matrix whose elements are | a; ; | and we write | A |<| B |
to mean that inequalities between matrices hold componentwise.

In [16] it is shown that any stable algorithm in a componentwise sense for solving
symmetric linear systems is strongly stable on the following classes of matrices:

1 = { symmetric positive definite matrices };
9 = { symmetric positive definite band matrices with bandwidth w };
3 = { symmetric diagonally dominant matrices };
4 =A
{

symmetric matrices with | aij [<v|ai;| };
symmetric band matrices with | a;; |< v | ai; | and with bandwith

As =

THEOREM 3.1. Assume that A € R™" is symmetric and A € U?:1 Ai. If(A+E)z =
b, where | E |< €| Al and z # 0, then there ezists a symmetric matriz AA € R™"
such that (A+ AA)z =b and | AA|< Kie | A | with

2n—1 1=1
2w—1 1=2
(5) K,=<¢ 3 1=3

2n—1)y+1  i=4
w—1)y+1 i=5.

Taking b = Az in the above we obtain the following theorem.

THEOREM 3.2. Assume that A € IR™® s symmetric and A € [ J>_, A;. If (A+E)z =
Az, where | E|< €| A| and z # 0, then there exists a symmetric matriz AA € R™
such that (A + AA)z = Az and | AA |< Kie | A | with K; defined in (5).

From Theorem 3.1 by taking b = (A + E)z and then b = (B + F)z we obtain the
following theorem .

THEOREM 3.3. Let A € U?:l A; and B be symmetric positive definite . If (A+E)z =
MB + F)z, where | E|<e|A|,|F|<e|B| and z# 0, then there exist symmetric
matrices AA and AB such that (A+ AA)z = \(B+ AB)z and | AA|< Kie| A| and
| AB |< Kie | B | where K; is defined in (5).

REMARK 1t is clear that if A € U?:l A; then also DAD ¢ U?zl A; for any non-
singular diagonal matrix D. See [1] where such classes of matrices were considered in
order to determine eigenvalues with high relative accuracy.
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4. PERTURBATION THEOREMS FOR SYMMETRIC-DEFINITE PENCILS

For a fuller treatment we refer the reader to [1] ,[5] and [8 ] and [15]. It is well known
that each eigenvalue of symmetric-definite pencil Az = ABz is real and satisfies the
following a max-min characterization ([15]):

THEOREM 4.1 (Fischer). Assume that A € R™™ is a symmetric matriz and B € R™"
is symmetric positive definite. Let the eigenvalues of (A, B) be ordered so that

AL2 A2 > 2 A
Then fori=1,2,...,n

.zt Az
Ai = max ~—min —x
dim(X)=i 0#zcX z! Bz

The following theorem was proved in [1] (Cf. [8]).

THEOREM 4.2 (Barlow and Demmel). Let A and B be symmetric matrices with B
positive definite. Let the pencil A—\B have eigenvalues ;. Let §A and 6B be symmetric

perturbations and let \;* be the (properly ordered) eigenvalues of (A+0A)—A(B+46B).
Suppose that

| £76Az |<na| 2T Az | and | 276Bz |[< B | Bz |
for all vectors x and some ng < 1 and ng < 1. Then either \; = A;' =0 or
1—na AN _14ma

<<
1+ = N ~ 1—nB

for all i.

Note that for singular matrix A the assumption | 276 Az |< na | 27 Az | forces some
special correlations between elements of 64 . The following example illustrates this.

For
(11 _ (& b
=(11) m=(55)
and = = [1, —1]T we have Az = 0 so 27§ Az = 0 hence 8, = (d; + J3)/2.
Using very similar proof to [1] we obtain the following theorem.

THEOREM 4.3. Let A and B be symmetric matrices with B positive definite. Let
the pencil A — AB have eigenvalues \;. Let A and 6B be symmetric perturbations
and let \;* be the (properly ordered) eigenvalues of (A + 6A) — A(B + 6B). Assume
that p(B~16B) < 1, where p() denotes the spectral radius. Denoting the i-the largest
eigenvalues of B-'6A and B~16B by \(B~*6A) and \i(B~'6B), we have

. -1 . -1
) Nt M(BTIOA) A+ (B 54)
1+ M (B 14B) 1+ \(B10B)
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Proof. The Fischer theorem implies that

T(A+64)x
7 . L T (A+dd)s
@ Al dirrnr%?\’))(:i O;Ié?clen)( zT(B + 0B)z

Because zT Bz > 0 for 0 # = € X, we have

T
T T _z 6Bz
z° (B+6B)x =z" Bx(l +ep) , where ep = —ThBs -
It is easy to check that
T(A+0A)s  SraZ te T
(8) z (A+ )xzm A,whereeA:——x JA:E.
zT(B + éB)z 1+ep zT Bz

From the Fischer max-min theorem for the symmetric—definite pencils 64 — AB and
0B — AB we have

9) An(B716A) < eq < Ai(B7164)
and
(10) A (B716B) < ep < M (B71B) .

We conclude from (7) that

i+ M(B716A4)  2T(A4+64)z N+ A (B71A)
1+ M (B™1B) ~ 2T(B+d6B)x ~ 1+ A (B-16B) °
which completes the proof.®

A weaker form of the Theorem 4.3 is stated in the following corollary.
COROLLARY.

p(B~16A)+ | i | p(B~14B)
1 - p(B~-16B)

This result follows from the observation that | A\;(B~'6B) |< p(B~'4B) and | Ai(B~164) |<
p(B7164) . m

(11) | A =N <

COROLLARY. In Theorem 4.3 suppose that B = I and 6B = 0. Let ); and );* denote
the i-th largest eigenvalue of symmetric matrices A and A+ §A. Then

i + A (64) < N < A+ A (64) .
It is well-known Weyl‘s inequality (Cf. [15]). B

REFERENCES

[1 ] J.L.Barlow and J.W.Demmel, Computing accurate eigensystems of scaled di-
agonally dominant matrices, SIAM J.Numer.Anal. 27 (1990), No. 3, 762-791.



THE STRONG STABILITY OF ALGORITHMS 31

[2 ] F.L.Bauer, Genauigkeitsfragen bel der Losung linearer Gleichungssysteme,
ZAMM, 46(1966), pp. 667-684.

(3 ] J.R.Bunch, The weak and strong stability of algorithms in numerical linear
algebra, Linear Algebra Appl., 88/89(1987), pp. 49-66.

[4 ] J.R.Bunch, J.W.Demmel and C.V.Loan, The strong stability of algorithms
for solving symmetric linear systems, SIAM J.Matriz Anal. Appl., 10(1989), pp.
494-499.

[5 ] A.S.Deif, Realistic a priori and a posteriori error bounds for computed eigen-
values, IMA J.Numer.Anal. 9 (1990), pp.323-329.

[6 ] J.Demmel, The componentwise distance to the nearest singular matrix, STAM
J.Matriz Anal. Appl., 13(1992), pp. 10-19.

[7 ] J.Demmel and N.J.Higham, Improved error bounds for underdetermined sys-
tem solvers, SIAM J.Matriz Anal.Appl., 14(1993), No. 1, pp. 1-14.

[8 ] J.Demmel and K.Veseli¢, Jacobi‘s method is more accurate than QR, SIAM
J.Matriz Anal. Appl., 13(1992), No. 4, pp. 1204-1245.

[9 ] J.E.Dennis, Jr. and J.J.Moré, Quasi-Newton methods, motivations, and
theory, SIAM Rev., 19(1977), pp. 46-89.

[10 ] G.H.Golub and C.F.Van Loan, Matrix computations, Second Edition, Johns
Hopkins University Press, Baltimore Maryland, 1989.

[11 ] D.J.Higham and N.J.Higham, Backward error and condition of structured
linear systems, SIAM J.Matriz Anal. Appl., 13(1992), pp. 162-175.

[12 ] N.J.Higham, A survey of componentwise perturbation theory in numerical
linear algebra, Numerical Analysis Report No. 241, February 1994, University
of Manchester.

[13 ] W.Oettli and W.Prager, Compatibility of approximate solutions of linear equa-
tions with given error bounds for coefficients and right-hand sides, Numer. Math.
6(1964), pp. 405-409.

[14 ] R.D.Skeel, Tterative refinement implies numerical stability for Gaussian elim-
ination, Math.Comp. 35 (1980), pp. 817-832.

[15 ] G.W.Stewart and Ji-guang Sun, Matrix perturbation theory, New York-London,
Academic Press, 1990.

[16 ] A.Smoktunowicz, A note on the strong componentwise stability of algorithms
for solving symmetric linear systems, Demonstratio Mathematica, Vol. XXVIII,
No. 2 (1995), pp. 443-448.

[17 ] J.H.Wilkinson, The algebraic eigenvalue problem, Oxford University Press,
1965.

Faculty of Mathematics and Information Science,
PL Politechniki 1, 00-661 Warsaw, Poland
e-mail: smok@mini.pw.edu.pl



