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CONTROLLABILITY OF PERTURBED INTEGRODIFFERENTIAL
SYSTEMS WITH PRESCRIBED CONTROLS

K.BALACHANDRAN AND K.SAKTHIVEL

ABSTRACT. In this paper we establish a set of sufficient conditions for the controlla-
bility of perturbed integrodifferential systems with prescribed controls by using the
Schaefer fixed point theorem.

1. INTRODUCTION

The problem of controllability of nonlinear systems by means of fixed point prin-
ciples has been studied by several authors [4]. Fixed point theorem due to Schaefer,
Fan, Tychonov and Schauder have been respectively applied by Anichini [1,2], Dauer
[7], Kartsatos [9] and Lukes [10] for studying the controllability of nonlinear systems
with prescribed controls. Balachandran [3] studied controllability of nonlinear Volterra
integrodifferential systems and Balachandran and Lalitha [5] discussed the controlla-
bility of nonlinear Volterra integrodifferential systems with prescribed controls. In this

paper we study the controllability of perturbed integrodifferential systems by using the
Schaefer fixed point theorem.

In this work, we have to find sufficient conditions for the controllability of the per-
turbed integrodifferential system

¢ ¢
(1)(t) = A@)z(t) + | H(t,s)z(s)ds + B(t)u(t) + ¢ (t,x(t), K(t, s)x(s)ds)
to to
by means of controls whose initial and final values can be prescribed in advance. That
is,we want to establish conditions on A(t), B(t), H(t,s) and g(t,x, ftto K(t,s)z(s)ds)
which ensure that, for each t9,T € R; «,8 € R™; z¢,zr € R, there exists a control
u € C([to, T); R™) for (1) with u(ty) = @, u(T) = 8 which produces a response z(t;u)
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satisfying the boundary conditions z(ty;u) = xo, and z(T;u) = z. This result will be
established by a fixed point argument to the linear boundary value problem

t t
B(t) = A@t)z(t) + H(t,s)x(s)ds-i—B(t)u(t)—f—g(t,z(t),, K(t,T)z(T)dT)

to to
.’L‘(to) = zy, .’L‘(T) =z, u(to) = a, u(T) =4

where z € C([tg, T]; R™), the space of continuous functions with sup norm. For brevity
let us take tg =0, a = ug, 8 = uy.

2. PRELIMINARIES

Consider the perturbed integrodifferential system of the form

t ¢
(2x(t) = A(t)z(t) + /0 H(t, s)x(s)ds + B(t)u(t) + g <t,w(t),/0 K(t, s)w(s)ds)

where z is an n vector and u is an m vector functions. The matrix functions A: J —
R”, B:J—R"™ J=[0,T], HLK=A—>R", A={(ts):0<t<s<T}
are assumed to be continuous and the function g : J x R™ x R® — R" is such that,
g(t,z,y) € C1(J x R* x R™, R™). :

Assume that for t € J, (t,s) € A, there exist positive constants m., ma, ms, my, ms,
and a continuous function (t) such that, ||A(t)|| < m1, ||B(@®)|| < me, ||H(t, )| < ms,
|K (¢, 8)]| < mgq and ||lg(¢t, z,y)|| < ms y(t), where the norm of a matrix is taken as in
[2]. '
We observe that the hypothesis on A(t) and H(¢, s) allow us to say that there exists
a unique continuous matrix E(¢,s) such that [6],

¢
8E(;i, 8) + E(t,s)A(s) + /s E(t,w)H (w,s)dw = 0,

with E(t,t) = I, the identity matrix for 0 < s <t < T. The system (1) is controllable
on [0,T] by means of a certain set U of controls iff for every pair o, zp € R", there
exists u € U such that z(0;u) = z¢ and z(T;u) = z7. For brevity let us denote,

P(t0) = /OtE(G,G—s)B(0~s)ds

- T t T .
ct;T) = /TtP(S;T)*dS_T/O P(s;T) ds

t
S(HT) = /0 E(t, )B(s)C (s; T)ds
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and define

¢
M(0,t) = AB(S)B(S)*ds

5r) = /OTP(S;G)P(S;())*ds—%[/OTP(S;Q)ds} [/OTP(S;G)*ds}

where the star denotes the matrix transpose. We observe that P(t;68), C(;T), and

S(t;T) are continuous. To prove the main result, we use the following fixed point the-
orem.

Schaefer’s Theorem: [8] Let S be a convex subset of a normed linear space X
and assume that 0 € S. Let T : § — S be completely continuous operator, and let
((T) = {z€8S:z=2Tz forsome 0< X <1}

Then either {(T') is unbounded or T has a fixed point.
The following theorem is vital to the criterion of controllability.

Theorem 2.1: Assume that the control process (1) satisfies the hypotheses. If the
matrix M(0,t;) is nonsingular for some ¢; > 0, then the set of points attainable by the
trajectories of the control process (1) is all of R™.

Proof: For fixed u, the given system has solution z(¢; u) which satisfies
t t 8
(3) =z(t;u) = =z +/ A(s)z(s;u)ds —l—/ [/ H(S,T)fL‘(T;U)dT] ds
0 o LJo
t t s
+/ B(s)u(s)ds+/ g (s,w(s;u),/ K(s,T)x(T;u)dT) ds.
0 0 0

Let z be any given point in R™. We have to find a control v such that for finite time
t; > 0, z(t1;v) = x1. Consider the control of the form v(t) = B(t)*q, where g € R™.
Define a mapping S : R* — R" as

S(q) = M0, t1)[z1 — K(g) ~ o]

where

K(g) = /0t1 A(s)z(s; q)ds + /Otl [/Os H(s,1)z(T; q)dT] ds

" /Ot1 9 (s, =(5:9), /OS K (s, 7)z(r; Q)d7'> ds.

Suppose that the mapping ¢ — S(g) has a fixed point, then
g=M"(0,t1)[z1 — K(g) — o]
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and from (3)
i1

z(t;;v) = zo+ | A(s)z(s; q)ds + /(jl [/Os H(s,T)x(T;q)dT] ds

+/ 1 B(s)B(s)*M~1(0,t,)[z1 — K(q) — mo)ds
0

+ /O ! g (s,x(s;q), /0 " K (s, 7)a(r q)d’r) ds

= I.

Now, we shall prove that the mapping ¢ — S(¢) has a fixed point. Since all the
functions involved in the definition of the operator S are continuous, and hence this
mapping is continuous. Then from (3), we have

lesll < flooll + [ A a5 w)lids + / t [ / t ||H<T,s)||nx<s;u)ndf] ds
+ [ iBas + [ la (satsiu, [ Koot war ) as

ool + | mile(sslas + t Ji t malls; )]

# [ suptmaluto)ls € 0,1pds + [ (o
ot [ t it | t mader| (s ) s

T
loll +m2 /0 sup {[u(s)]} s € [0, T1}ds + o

IN

IN

where

Qo

T
Yo = ms/O sup {v(s),s € [0,T]}ds.

Therefore, by Gronwall’s inequality

lotl < aveap (m + / t madr)is )

T2
< ogezxp (mlT + m32 )

Thus if, ||g]] < 400, then ||z(t;u)| < +oo, which implies that ||K(q)|| < +oco and
hence [|S(q)|l < +o0o. Thus S(q) sends bounded sets into bounded sets. By a similar
argument, we can show that the solutions of the equation ¢ = X S(g), for 0 < X < 1,
are bounded. Then, by Schaefer’s theorem the mapping has a fixed point.
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3. MAIN RESULT
For z € Z = C(J, R™) consider

1 t
@) @) = B0+ Pltithuo + (ur — uo) /0 P(s; t)ds

+S(# Ty (T) + /O “Bit,5)g (s,z(s), /0 SK(S,T)z(T)dT> ds

() w() = (- puot pur+ CETD)

where

_ 1 T
vat) = SO for — BT, 0)0 — P(T;tuo — 7 (ur — uo) /0 P(s;t)ds

(6) _ /0 B9 (s,z(s), /O ’ K(s,’r)z(*r)d’r) ds).

Before going to the main result, we state the following proposition without proof.

Proposition 3.1: For all z € Z, we have

t t
/ E(t,s)B(s)u,(s)ds = P(t;t)up + %(UT — ug) / P(s;t)ds + S(t; T)y.(T)
0 0
and S(T;T) = S(T).

Proposition 3.2: Consider the boundary value control process,

t
z(t) = / H(t,s)z(s)ds + B(t)u(t) + ¢ (t,z(t),/o K(t,T)Z(T)dT)
(Nz(0) = z9, =(T)=2zr, u(0)=uy, u(T)=ur.

Then, if the matrix M(0,T) is nonsingular, every pair (z(t), u(t)) defined in (4) and
(5) provides a solution to the boundary value control process (7).

Proof: If the matrix M(0,T) is nonsingular, then the control system (7) is con-

trollable on [0, T]. Moreover, the inverse [S(T)]~' exists. Thus the pair (z,(t),u.(t))
defined in (4) and (5) is well defined for all z € Z. We have to show that

z(t) = / H(t,s)z(s)ds + B(t)u(t) + g (t,z(t),/OtK(t,'r)z(T)dT)

z(0) = zo, =7, u(0)=uy, u(T)=ur.
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Now we using (4),we get

1 t
zt) = B(t0)zo + Pltithuo + o (ur — o) / P(s; t)ds

+S(t;T)yZ(T)+/ (t, 5)g (sz /KST )

By Proposition (3.1), we have

5(t) = E(t0)z0+ /0 B(t, 5)B(s)us(s)ds + /0 ‘Bt 9)g (s,z(s),A SK(s,T)z(T)dT> ds.

Differentiating, we get

t
#,(t) = aE(gtO)‘”"Jr /0 6E£’;’S)B(s)uz(s)ds

+E(t, ) B(t)us () + /0 8E £ s) ( / K(s,7)2 )

LE(t,t)g (t,z(t), /0 "k t,T)z(T)dT> .

t
= A(t) [E(t,O)m0+/ E(t,8)B(s)u,(s)ds
+/0tE(t,s) ( /KS’T T)dr ds]
+/0tH(t,7')[ 7'0.’1:0—}—/ E(1,8)B(s)u(s)ds

+ /0 " B(r, 8)g (s,z s), /O K( s,T)z(T‘)d’r) ds] dr + B(t)u,(t)

g (t,z(t), /0 tK(t,T)z(T)dT>

= A(t)z.(t) +/0 H(t,7)z,(7)dT + B(t)u,(t) +9g (t,z(t),/0 K(t,r)z(7‘)d7'> .
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Also we have

; 1 T
oT) = E(T,00a0+ P(T; T + (ur —wo) /0 P(s;T)ds

+S(T;T)y.(T) + /0 " B(T.5)g <s,z(s), /0 SK(s,T)z(T)dT) ds

1 T
= B(T,0)z0 + P(T; Tuo + (ur — o) / P(s;T)ds
0

T
+ S(T;T)[S(T; ) zr — E(T,0)z0 — P(T; T)ug — %(uT - uo)/ P(s;T)ds

0
_ /OT E(T,s)g (s,z(s), /OSK(S,T)z(T)dT> ds]

+/0T E(T,s)g (s,z(s),/os K(S,T)Z(T)dq—) s
T

and z,(0) = zo, u,(0) =wg, u,(T)=ur.
Now we shall prove the main result of this paper.

Theorem 3.1: Assume that the nonlinear control process (1) satisfies the hypotheses
and that the matrix M(0,T) is nonsingular for T > 0. Then for every o, 8,7 € R™,
Zg, %1, 2T € R™ and every w € [0,T] there exists a control v, such that,

:(a) v(0) =, w(w) =4, o(T)=xy
: (b) the response of (1), for which z(0;v) = zo, satisfies z(w;v) = z; and
z(T;v) = z7.

Proof: Consider the mapping Q : 2 € Z — Q(z) = z, € Z where z, = z,(t) and
z,(t) and u,(t) are defined in (4) and (5) respectively. Then the proof is based upon
two applications of Proposition 3.2.

First setting w = T, up = @, ur = 3, and 7 = 1, we can obtain a response z(t;v)
of (1) such that z(0;v) = zp and z(w;v) = z1. Then, setting up = B, To = 71, and
ur = 7 we can obtain a response z(t;v) of (1) such that z(w;v) = z; and z(T;v) = zT.
Thus, we extend the response z(t;v) to whole interval [0,T] and hence the theorem is
proved.

To show that the mapping @ has a fixed point, we use Schaefer’s theorem. Since
E(.,.), P(.;.) and S(.) are continuous and g(., z,y) is continuous with respect to z,y,
we can say that z — y,(¢) is continuous with respect to z. Thus the map z — x, is
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continuous. Assume ||z|| <r, 0 < r < 400. Then,

t t t
1B ) < 1]+ / 1E(t,0) ]| A(6)]|d6 + / [/6 \E(t, )| H(,0)||dr | do

t [
< 1+ / IE(, 6)]](m1 + /0 madr)dd

By Gronwall’s inequality,

B0l < eon( [ (i + | ’ madr)a0

2
< ezxp (mlw + mat )

2
t
P& < /OIIE(t,S)IIIIB(S)IIds

m3w2
mowezrp | miw +

IA

2

T T
DI < [ WPTY s+ ) [ IPT)" s
2

w
2m2w26xp (mlw + ms )

IA

2

t
ISE DI < /0IIE(t,S)IIIIB(S)IIIIC’(S;T)HdS

2
2um2exp?2 <m1w + msw ) = mg.

IA

2
ly-()ll - < NSON Izl + 1B, 0)ll|lzoll + |1 P(T; w)lllluoll

T
+gltur =l [ 1P(ssw)lds

T /0 NECTE (s,z<s), /0 SK(s,r)zde) Ids]
2

IA

maw
a1 [||$1|| + exp (mlw + T) l|zoll

m3w2
+ amswerp <m1w + 2 )

maw? maw?
+|a — Blmowezp | miw + 5 +ezp (miw+ —— |0

my.

i
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Thus we get

Q@) = llz- (2]
t
< 1B lleoll + 1Pl + (llur = woll [ 1P 0)]ds

t s
+wmnmwmu£umwmm@%mﬁk@ﬂmwﬂws

m3w2 m3w2
< llwollezp { miw + —— ) + amowesp { miw + —3

2

maw maw?
5 + mgmy + exp | miw + ) Yo

+|a — Blmowezp (mlw +

= 7mg.
Let us now estimate,

2 (t1) — z(t2)ll
< IE(t1,0) ~ E(ts, 0)|[[lzo]l + 1P(t15t1) — P(t2; ta)l|]e]

t1
ploz mh/(<sm—Pwmwmuwﬂ H&m%ﬂ
s W)} S(ts5 ) — S(ta; w)

+u/t1 (t1,5) — Elts,5))g (sz /KST)z(T)dT) ds||
+ ; E(ty, s) (82 /KST dT) ds].

From the previous inequalities, we have

1

< 0nmwm—Emﬁmmwmw+[meﬁmmwwo

f[ﬂﬂ”ﬂ%m—Emﬁmmwﬂwﬂw

+£{wamwmwﬂw

t1

; mi||E(t1,0) — E(t2,0)||d6

IA

31
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m3w2
+|ty — ta|miexp (mlw + 5 )

+/0t1 |E(t1,0) - B(t2,6)] [/ m3d7'] d0+/: |E(t2,0)] [/()9m3d7] a8

2
maw
|t1 — t2|(m1 + m3w)exp (mlw + 3 )

IA

2

s+ msw) [ " |B(t1,6) - B(t2,0)]|d8

and using Gronwall’s inequality we get
1 E(t1,0) — E(t2,0)l|

2
maw
< |t1 = tal(m1 + maw)exp((my + msw)ty)exp (mlw + 32 ) .

Further,

1P (t1;t1) — P(ta; t2)|

t1 11
/ 1E(t1, 5) — Blts, s)|| B(s)llds + / |E(t1, )1 B(s)lds
0 t2

< |ty — ta|ma(ti(my + maw)exp((mq + maw)ty) + 1)

m3w2
Xexrp (mlw + 9 ) ,

A

t1 t1
| [ P(sit1) = P(ssto)ds|| < / I1P(s; 1) — P(s; t2)|ds
1) 0
S ‘tl - tQImQtl (tl (m1 + m3w)
2
xezp((m1 + maw)t1) + 1)exp (mlw + m32w ) ,
t1 t1
I [ Psita)ds] < / 1P(s; £2)lds
to t2
2
. msw
< |t — tolmowesp (mlw T ) ,
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i1 _
1S(ts; w) — S(tz;w)]| < / \E(t1,5) — E(ta, ) |1B()|[1C(s; T)lds
t1 B
+ / |E(t, $)|1B(s) |G (s Tl ds
2

< |t1 — t2|2m22w2 (tl (m1 + mgw)e:tp((ml + m3w)t1) + 1)

2
Xexp2 (mlw + m32w ) )

IA

t1 t1
II/ E(t1,8) — E(t2,5))g(s, 2(s), y)ds|| . I(E(t1, 8) = B(t2, 5))lllg (s, 2(s), y)llds

< |t —taltivo(m1+maw)exp((mi+msw)ty)

(e 25)
Xerp | miw + )

2
and
t1 t1
I/ Bt Dats,2(s)n)dsll < [ 1B s)lg(s: (9, v) s
2 23
m3w2
< |t1—t2|706$p<m1w+ 5 )
Therefore,

llzz (£1) — 2 (t2)|

m3w2
< lzolllts — t2](m1 + maw)exp((my + maw)ty)exp | miw + 5

2
maw
+  |al|ty — to|ma(t1(m1 + maw)ezp((my + maw)ty) + 1)exp (mlw + 32 )
la — B
w

[ltl — tQImQtl (t1 (m1 + mgw)

2
maw
exp((m1 + msw)t1) + 1)exp <m1w + 32 >

2
msw
+ |t1 — te|mowezp (mlw 4 8 )]

2
2
2,2 maw
+  mrlty — t22mo w? (81 (my + maw)exp((m1 + maw)ty) + 1)exp2 (mlw + 5 )
m3w2
+  |t1 — taltiyo(my + mgw)exzp((my + maw)ty)exp | miw + 5

m3w2
+ |t1 — to|yoezp <m1w + 5 > .
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Thus the mapping z — Q(z) is equicontinuous and equibounded. Since the solutions
of the equation z = AQ(z) are bounded for 0 < A < 1. Then by Schaefer’s theorem, Q
has a fixed point. Hence the theorem.
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