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SIMULATIONS IN OPTION PRICING MODELS APPLIED TO
KOSPI200

JONU LEE AND SEKI KIM

ABSTRACT. Simulations on the nonlinear partial differential equation derived from
Black-Scholes equation with transaction costs are performed. These numerical exper-
iments using finite element methods are applied to KOSPI200 in 2002 and the option
prices obtained with transaction costs are closer to the real prices in market than the
prices used in Korea Stock Exchange.

1. INTRODUCTION

Tn the option pricing models of the seminal studies of Black and Scholes [2] and
Merton. [11], the call option is completely and continuously replicated by a stock and
riskless asset portfolio. These models for option pricing assume the frictionless mar-
kets without transaction costs. These option pricing models are not applicable in the
presence of transaction costs on trading the underlying asset, in recent years many
researchers have attempted to develop option pricing models containing transaction
costs. This research was begun by Leland [10] and extended by Boyle and Vorst (3],
Hoggard, Whalley and Wilmott (8], Avellaneda and Panas (1], Toft [14], Whalley and
Wilmott [15], and Henrotte [6]. The first five of these suppose hedging takes place at
given discrete time intervals and the last two assume flexible but prescribed trading
rules. These involve a band around the ideal value of A, within which the number of
assets actually held in the portfolio is allowed to vary.

Leland [10] showed that the price of the option should be induced by the Black-
Scholes price with a modified volatility, which depends on the transaction costs, the
original volatility, and the time interval between successive adjustments of the portfolio.
On work of Merton [12] and Shen [13], Boyle and Vorst [3] put Leland’s work into
the binomial framework of Cox, Ross, and Rubinstein [4] and derived self-financing
strategies completely replicating the final payoffs to short and long positions in put
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and call options, assuming proportional transaction costs on trades in the asset and no
transaction costs on trades in the bonds.

As a different direction, the global-in-time models illustrated by the model of Hodges
and Neuberger [7] and Davis, Panas, and Zariphopoulou [5] achieve an element of
optimality since they are based on the approach of utility maximization. These models
are slow to compute since they usually result in three- or four-dimensional free boundary
problems. In a recent paper Kim [9], he showed the generalized model of Hoggard,
Whalley and Wilmott [8] and Henrotte [6] which are concentrated on the analysis of
the transaction costs and bandwidth rehedging policy.

In this paper, we obtain numerical solutions of the nonlinear partial differential
equations arising in option pricing models with transaction costs and compare these
results with real option prices traded in KOSPI200. In section 2, we introduce the
nonlinear partial differential equation [9] for option price with transaction costs and
bandwidth and solve this nonlinear equation numerically with finite element method
using piecewise quadratic polynomial basis functions. In section 3, we compare the
result of section 2 with KOSPI200 stock index option prices traded in Korea.

2. OPTION PRICING EQUATION AND ITS NUMERICAL SOLUTIONS

In this section we introduce the option pricing nonlinear partial differential equation
[9]. To derive the option pricing equation that has option price u(t, S) with transaction
costs, K (v, S), and the bandwidth, A, which is a measure of the maximum expected
risk in the rehedging portfolio, we need the following assumptions.

e The portfolio is revised every &t where 6t is a finite, fixed and small interval.

S = uSst + o Spot/?

where ¢ is drawn from a standardized normal distribution and p is the stock price’s
instantaneous expected return and o is the instantaneous variance of stock price’s
return.

e Short selling is allowed and the assets are divisible.

e The risk-free interest rate r and the asset volatility o are known, deterministic
functions of time over the life of the option as constant.

e No arbitrage opportunities (The hedged portfolio has an expected return equal to
that from a bank deposit)

e The constant dividend yield is 7 and this dividend is taxed at rate 7. Suppose v
is the number of shares traded, we can find the number of assets we trade

O%u

1
v :0'555;5(]5575 /2

from the portfolio
M=u—AS
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where A = 9u/8S. The transaction costs K (v, S) is expressed as the sum of three

terms, a fixed cost, a cost proportional to volume traded and a cost proportional to the
value traded.

n

K (v,8) =k +ka|v] + (Z (G — G- U (v S —wi)) v] §

=1
where k; and ¢; are constant, and z; represents the level of the amount |v| S which has
the proportional constant ¢; and U is the Heaviside function as

1 if 520
U(””)*{o if z<0.

We introduce the nonlinear partial differential equation derived from the option
pricing model with transaction costs and bandwidth [9].

Theorem 1. The option price u with the transaction costs and the bandwidth satisﬁe‘s
the nonlinear partial differential equation

3ugt,5) + ; 2529_"_;%2_52 Fr=n)(1-7) SauétSS) (=7 ult, )

028412 n . AL
(1) Y (k1+ (kz-i—S;(Ci—Ci—l)U(Az _xl)> ?> —0

where o, v, n and T are constants and T is the option’s gamma %u /052

We try to find numerical solutions of call option price u satisfied the equation (1).
Suppose the stock price § moves from 0 to a and T is the time to maturity of the
option. We have the mixed boundary conditions of the equation (1) as following.

u(T,S) = max (S — X,0)
u(t,0) =0
ug (t,a) =1
where X is the strike price. By using differences for the differential in time, the equation
(1) becomes
u(tm, S) — u(tm-1,95)
At

+ %O’QSZUH(tm_h S)+ (r—n)(1—71)8Su'(tm-1,5)

k
_7.(1 _T) U(tm_l,S) A12/2 2S3 ( ”(tm—laS))2
k n
(2) ( L+ 2. DU (A%~ )) 028" (W' (tm-1,5))" = 0
where
8U(t,S) _ ’U/(t S) azu(t7 S) _ ’U,”(t S)
as T 982 ’
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and At = t; —t;_1 0=ty <ty < - <ty-1 <ty =T). Define three notations for
option prices at different time node points and for the simplication,

V(5) :i=u(tm-1,5)
V(S) = u(tm,S)

Ty = i (G—s-1)U (A% - $z) ,
=1

With these notations the equation (2) can be rewritten as following.

(Ait +r(l- T)> V(S) ~ 5o*S*V(S)

— (=) (L= 7) SV(8) + 1125078 (V'(5)°
+ (% + K%T") o5 (V'($))" ~ 1V (5) = 0.

S is the only variable of the function V since ¢ is fixed from now on. Let C.[0,a] be
the class of continuous functions with compact support on [0,a]. Define the set ® of
functions as

® := {U(S) € C.[0,a] : ¥(S) is second order differentiable function} .

We multiply the function ¥(S) (€ ®) to both sides of the above equation and integrate
on [0,q]

(Ait fr(l- T)) /0 V() (8)dS ~ 1o / " 2V (8)w(8)ds

~tr=n-n [ SV(SuSS+ et [ 5 (17(8) wS)is
k1 1

®  +(rpam) e [ st ey s - 5; [ Vs ws)s =o

Because equation (3) is satisfied for all functions ¥(S), equation (2) and (3) have the
same solution V(). Now we choose admissible basis functions and test functions ¥;(S)
as two following cases.
Case I. ¢ is even.
( 0 if S<(i—-2)h
o (S — (= 2)R)(S—(i=1)h) if (i-Dh<S<ih
W (S) = <

;ﬁ(S—(iH)h)(S—(Hz)h) if th<S<(i+2)h
\ 0 if (i+2)h<S

where h =8;—5; 1 (0=8;<S; <---<Sy_1 < Sy =a) and N is an even number.




SIMULATIONS IN OPTION PRICING MODELS APPLIED TO KOSPI200 17

Case I1. 7 is odd.

0 if S<(@-1)h
Ti(S) = —%(S—(i—l)h)(S—(iH)h) i —1)h<S<@+1)h
0 if (i+1)h<S.

Let V,(S) be the approximate solution of V(S ).
V(S) = V,(S) = Zam—qu

Note that the solution at j = 0 can be obtalned directly from the second boundary
condition. o™ ! represents the numerical solution of the equation (1) at (m — 1)th
time step and jth node point of stock price. Now we calculate all integration terms of
the equation (3). Each term can be calculated in three cases that the node points are
even numbers, odd numbers and an end node point. For the first integration term,

/ "V (S)u(8)ds
0

Case 1. i is even:

Case I1. 7 is odd:
_2h o1 16hm1 2hm1

T Yy 15 it
h 2h -1 4h o]
_ + .
5ON-2 2+ 15 BN T 5N
Because the second integration term involves the third boundary condition, the first
part used in integration by parts vanishes except at end node point of S.

/ ’ S*V"(S)¥(S)dS
0 .

Case I1I. ¢ is N:

Case I. 7 is even:

ll

(4 + 5i%) m21+4h 1+ 532) ot

’L 15(
m—1

4
(4 + 35:%) o 1+1—f5b(1+5i2)ai+_1

(4 + 52) ;121

%Ib&lwé’i\b
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Case II. 7 is odd:
4h

2\ m_1 S8k
=z (1+5%) o' — = (1450 ot
4h 2\ m—
+ 5 (14 5i2) a7t

Case IIl. 7 is N:

—a2—£(4+5N2) =

30
+ % (1+5N*) o] — % (4+35N?%) oy !
We perform the third term of equation (3) in a similar way.
/Oa SV'(S)¥(S)dS
Case I. 4 is even:
=55 (-4 +50) a5 - % (—2+5i) 7" — %a;"“l
+%}5—L(2+5z) i ———(4+51) Z+2

Case II. 7 is odd:

2h 8h 2h
= -5 (F2+5) o R T 1+E(2+5z) mt
Case III. 7 is N:

h 2h

—4 l— = (-2+5N)ay"]
30( + 5N) oy 15( +5N) oy

h
-4+ 15N) o

The next two parts including f;'S° (V"(8))* ¥(S)dS and f; S* (V"(5))2 ®(S)dS of
the integration containing the non-linear property of equation (1) should be calculated
carefully. First of all, we find the second derivatives of all basis functions and multiply
their square values to the followings

JE S, (S)dS and [ 54T;(S)dS

where 4 is the main node point. Thus the first part is expressed as following.

/ " $ (V(9))? ©(S)dS

0
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Case I. 7 is even:

1
—5(4 6’L+5Z)(Z2—2all+am 1)2
1
15 (—4 - 6i 4 58%) (o™t — 20707 + o25")°
Case 1II. ¢ is odd:
4
= =i (3+5%) (o = 207 +al}y)”
Case III. 7 is N:
T 15 T (46N +5N°) (ah — 2087 + )’
Similarly, we have the second part mentioned above in three cases.
a
/ $H(V"(8))* w(S)ds
0
Case L. 5 is even:
h
=1og (48 + 112 — 84 + 35:%) (o] =20 4t
h
+ g5 (18 1121 - 84 4 36i") (o'~ — 207" + o)’
Case II. ¢ is odd:

4h
105
Case II1. 7 is N:

(3 + 422 + 35¢%) (7' — 20" 1+aﬁ11)

105( 48 4+ 112N — 84N2 + 35N (oL — 2070t + o)’

Since the last term of the equation (3) is evaluated from the first boundary condition, we
skip the calculation steps. From all three cases the numerical solutions of the equation
(1) using iterative methods can be found easily and rapidly.

As a different way, put option’s boundary conditions are formulated as following.

u(T,S) = max (X — S,0)
u(t,0) = Xe T
u(t,a) =0.

The numerical solutions of the put option price with transaction costs in equation (1)
can be obtained in a very similar way to the procedure in the call option pricing.
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3. NUMERICAL EXPERIMENTS FOR OPTION PRICES WITH REAL DATA

In this section we compare numerical solutions computed in section 2 with KOSPI1200
stock index option price traded in Korea. KOSPI200 option price is represented by
“point” and its price is 100,000 Won per one point contract. We choose the data that
started on September 13, 2002 and ended on December 12, 2002 and suppose that the
bandwidth, A, of the rehedging position is the exercise price for each underlying asset
price. Suppose there are no dividend and tax in KOSPI200 stock index option, so
n =1 = 0. We use the 91-date CD(certificate of deposit) yield for risk-free interest
rate and apply 0.3% brokerage commission as transaction costs.

We perform the evaluations of the option prices every 10 days from starting date of
the KOSPI200 stock index option and use the closing price of the option during the
day as option price. If the day chosen for data is not a working day, the option price
of the next working day is taken. To simplify the notations of tables, we adopt the
following abbreviations.

> Day : deal date of the option

> EP : exercise price for option

> AP : underlying asset price i.e. KOSPI200 stock index

> CDR : risk-free interest rate i.e. 91-date CD rate

> RP : real KOSPI200 stock index option price traded i.e. closing price
&> TP : theoretical price provided by Korea Stock Exchange

> NS : numerical solution of equation (1) computed in section 2

In Table 1, we compare KQSPI200 stock index call option prices with theoretical
prices provided by Korea Stock Exchange and our numerical solutions calculated in
section 2. The absolute value of maximum error for theoretical prices, |[RP — TP|| =
2.17, is larger than that for numerical solutions, |[RP — NS||, = 0.415, on September
13, 2002. The total errors for call option are ||[RP — TP||; = 9.07 and ||RP — NS|, =
1.82. These facts show that numerical solutions are closer to real traded option prices
than theoretical prices.

In Table 2, we compare KOSPI200 stock index put option prices with theoretical
prices and numerical solutions. The absolute value of maximum error for theoretical
prices, ||RP — TP||, = 2.7, is larger than that for numerical solutions, |[RP — NS||,, =
1.15, on October 4, 2002. The total errors for put option are |[RP — TP||, = 9.92 and
|IRP — NSJ|; = 6.02. We also know that numerical solutions are closer to real traded
option prices than theoretical prices.

In Table 1 and 2, it is shown that numerical solutions give the better approximation
to real option prices than theoretical prices provided by Korea Stock Exchange and
numerical solutions of call option prices on KOSPI200 stock index are closer to real
prices than those of put option prices. On the maturity, 104,624,716 contracts on
KOSPI200 stock index call option were traded but only 72,499,076 contracts on put
option traded. The volume of contracts traded on maturity is expected to affect the
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accuracy of numerical solution of option price. Numerical solutions computed here can
be provided as the theoretical prices for KOSPI200 stock index option prices in Korea
Stock Exchange.

Table 1. Comparison on call option prices with numerical solutions
| Day | EP | AP | CDR | Volatility | RP | TP | NS |

09-137 90 [ 90.3 [ 4.80% | 33.24% | 6.3 | 7.3 | 6.64884594
09-23 | 85 [85.18 | 4.82% | 33.95% |5.55 | 7.72 | 5.96464573
10-04 [ 82.5 | 81.91 | 4.86% | 32.74% | 4.5 | 4.51 | 4.77272173
10-14 [ 77.5 [ 77.27 | 4.88% | 34.79% | 4.6 | 2.88 | 4.54069822
10-23 1 82.5 | 82.77 [ 4.94% | 36.08% | 5.15 | 3.55 | 4.87008560
11-04 | 85 [85.04 | 4.94% | 36.93% |4.45|2.68 | 4.33982184
11-12 [ 82.5 [ 82.74 | 4.92% | 34.83% | 3.6 | 3.79 | 3.64902607
11-22 [ 87.5 | 87.97 | 4.89% | 33.53% |3.05 | 2.89 | 3.19504184
12-02192.592.69 | 4.90% | 32.29% | 2.1 | 1.65 | 2.23847062

Table 2. Comparison on put option prices with numerical solutions
| Day | EP | AP | CDR | Volatility | RP | TP | NS |

09-131 90 [ 90.3 |4.80% | 33.24% | 6.1 |4.77 | 5.27634767
09-23 | 85 [85.18 | 4.82% | 33.95% | 5.9 | 4.3 | 4.87853316
10-04 [ 82.5 | 81.91 | 4.86% | 32.74% |5.75 | 4.83 | 4.59589328
10-14 [ 77.5 [ 77.27 | 4.88% | 34.79% | 4.8 | 7.5 | 4.15003742
10-23 1 82.5 | 82.77 | 4.94% | 36.08% |5.15 | 6.02 | 4.03093637
11-04 | 85 [85.04 [ 4.94% | 36.93% |4.45 | 6.27 | 3.85084925
11-1282.5 | 82.74 | 4.92% | 34.83% | 3.6 | 3.45| 3.06375846
11-22 | 87.5 [ 87.97 | 4.89% | 33.53% |2.42 | 2.83 | 2.47804241
12-02 192.5 | 92.69 | 4.90% | 32.29% |1.99 | 2.11 | 1.93102257
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