DOI QR코드

DOI QR Code

보일러내 열 전달 효율 개선을 위한 초음파발신기 개발

The development of ultrasonic transmitter to enhance the efficiency of heat transfer rate in boiler

  • 발행 : 2003.03.31

초록

보일러나 열교환기의 관 벽에 부착되는 스케일 방지용으로 설계된 초음파 발신기는 전기적 에너지를 초음파로 변환시켜주는 자왜소자와 발생된 초음파를 부하매질에 전달하는 도파봉으로 구성된다. 본 논문에서는 진동자로 사용되는 자왜소자의 형상설계와 진동자에서 발생된 초음파를 증폭시켜 부하매질로 전달하기 위한 몇 가지 형태의 도파봉에 대해 이론해석을 수행하여 필요한 사양을 도출하였다. 최종적인 도파봉의 길이는 음압 측정을 통해 선정하였다. 마지막으로 제작된 초음파발신기를 사용하여 보일러와 유사한 조건에서 스케일 방지효과를 확인하였다.

Ultrasonic transmitter used for scale prevention in boiler or heat exchanger is composed of the magnetostrictive material which transforms electric energy into ultrasonic wave and the horn which amplifies generated ultrasonic wave and transfers it into medium loaded. In this paper, we have performed the shape design for magnetostrictive material and analyzed a few type of horns which amplify generated ultrasonic wave and found each solution theoretically. Final length of the horn has been determined by measuring the sound pressure in medium between theoretical value and experience data. At last we have given the results of our study for the effects of ultrasonic wave irradiated by manufactured ultrasonic transmitter on preventing scale deposition on test pipe under the similar condition to boiler.

키워드

참고문헌

  1. A. G. Duncan. C. D. West. 'Prevention of incrustation on crystallizer heat exchangers by ultrasonic vibration'. Trans. Instn Chen. Engrs, vol. 50. PP. 109-114. 1972
  2. A. D. Pandey, K. K. Mallick, P. C. Pandey, S. Varma, 'Prevention of scale preposition on heat exchanger surfaces by use of high intensity ultrasonic waves during concentration of wet process phosphoric acid'. Fertil. News, vol. 28, no. 6, pp. 45-48. 1983
  3. Q. Qi, G. J. Brereton. 'Mechanism of removal of micron-sized particles by high-frequency ultrasonic waves', IEEE Trans. Ultrason., Ferroeleet., Freq. Contr., vol. 42, no. 4, pp. 619-629. July 1995 https://doi.org/10.1109/58.393105
  4. H. Hatano, 'High-frequency ultrasonic cleaning tank utilizing oblique incidence', IEEE Trans. Ultrason., vol. 43, no. 2, pp. 531-535. July 1996 https://doi.org/10.1109/58.503712
  5. J. Berlan, T. J. Mason, 'Sonochemistry: from research laboratories to industrial plants', Ultrason., vol. 30, No. 4, pp. 203-212. 1992 https://doi.org/10.1016/0041-624X(92)90078-Z
  6. S. Dahnke, K. M. Swamy, F. J. Keil, 'Modeling of three-dimensional pressure fields in sonochemical reactors with an inhomogeneous density distribution of cavitation bubbles. Comparison of theoretical and experimental results', Ultrason. Sonochem. 6. pp. 31-41, 1999 https://doi.org/10.1016/S1350-4177(98)00026-1
  7. D. Ensminger, Ultrasonics: the low-and high-intensity applications. Marcel Dekker. Inc., New York, 1973