Kangweon-Kyungki Math. Jour. 10 (2002), No. 2, pp. 141-148

GRADATIONS OF SUPRAOPENNESS

WON KEUN MIN, CHUN-KEE PARK AND MYEONG HWAN KIM

ABSTRACT. We introduce the concept of gradation of supraopenness. With the concept of gradation of supraopenness, we invesigate the basic properties of H-fuzzy supratopological spaces, H-fuzzy suprainterior and H-fuzzy supraclosure.

1. Introduction

Fuzzy topological spaces were first introduced in the literature by Chang [2] who studied a number of the basic concepts including fuzzy continuous maps and compactness. And fuzzy topological spaces are a very natural generalization of topological spaces. In [3], R. N. Hazra et.al introduced a new fuzzy topology and fuzzy topological space in terms of lattices L and L', both of which were taken to be I = [0, 1]. In this paper, we will call the new fuzzy topology an H-fuzzy topology. 0_X and 1_X will denote the characteristic functions of the crisp sets \emptyset and X, respectively. An H-fuzzy topological space [3] is a pair (X, τ) , where X is a non-empty set and $\tau : I^X \to I$ is a mapping satisfying the following properties:

(O1) $\tau(0_X) = \tau(1_X) = 1.$

(O2) If $\tau(A) > 0, \tau(B) > 0$, then $\tau(A \cap B) > 0$, for $A, B \in I^X$.

(O3) For every subfamily $\{A_i : i \in J\} \subset I^X$, if $\tau(A_i) > 0$, then $\tau(\bigcup_{i \in J} A_i) > 0$.

Then the mapping $\tau : I^X \to I$ is called an H-fuzzy topology or a gradation of openness on X.

If the H-fuzzy topoloy τ on X has the following property:

Received July 25, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 54A40.

Key words and phrases: H-fuzzy supratopology, gradation of supraopenness, H-fuzzy suprainterior, H-fuzzy supraclosure.

This work was supported by a grant from Research Institute for Basic Science at Kangwon National University.

(O4) $\tau(I^X) \subset \{0,1\}$, then τ corresponds in a one to one way to a fuzzy topology in Chang's sense [2].

A mapping $\tau^* : I^X \to I$ is called an H-fuzzy cotopology or a gradation closedness [3] iff the following three conditions are satisfied:

(C1) $\tau^*(0_X) = \tau^*(1_X) = 1.$

(C2) If $\tau^*(A), \tau^*(B) > 0$, then $\tau^*(A \cup B) > 0$, for $A, B \in I^X$.

(C3) For every subfamily $\{A_i : i \in J\} \subset I^X$, if $\tau^*(A_i) > 0$, then $\tau^*(\bigcap_{i \in J} A_i) > 0$.

If τ is an H-fuzzy topology on X, then a mapping $\tau^* : I^X \to I$, defined by $\tau^*(A) = \tau(A^c)$ where A^c denotes the complement of A, is an H-fuzzy cotopology. Conversely, if τ^* is an H-fuzzy cotopology on X, then a mapping $\tau : I^X \to I$, defined by $\tau(A) = \tau^*(A^c)$, is an H-fuzzy topology on X [3].

Let (X, τ) be an H-fuzzy topological space and $A \in I^X$. Then the H-fuzzy closure of A, denoted by A^- , is defined by

$$A^{-} = \cap \{ K \in I^{X} : \tau^{*}(K) > 0, A \subset K \},\$$

where $\tau^{*}(K) = \tau(K^{c})$ [3].

In 1987, M. E. Abd El-Monsef et al. introduced a fuzzy supratopology [1] as the following : A subclass τ of I^X is called a fuzzy supratopology for the set X if

(1) $0_X, 1_X \in \tau$.

(2) For every subfamily $\{A_i : i \in J\} \subset I^X, \cup_{i \in J} A_i \in \tau$.

And the pair (X, τ) is called a fuzzy supratopological space.

2. Gradations of supraopenness

DEFINITION 2.1. A gradation of supraopenness τ on X is a map $\tau: L^X \to L'$ satisfying the following properties, where L = L' = [0, 1]: (S1) $\tau^*(0_X) = \tau^*(1_X) = 1$.

(S2) For every subfamily $\{A_i : i \in J\} \subset I^X$, if $\tau(A_i) > 0$, then $\tau(\bigcup_{i \in J} A_i) > 0$.

Then the pair (X, τ) is called an H-fuzzy supratopological space. If τ is a crisp (i.e. $L' = \{0, 1\}$), then the τ is a classical fuzzy supratopology on X [1].

DEFINITION 2.2. A mapping $\tau^* : I^X \to I$ is called a gradation of supraclosedness if the following two conditions are satisfied:

(C1) $\tau^*(0_X) = \tau^*(1_X) = 1.$

(C2) For every subfamily $\{A_i : i \in J\} \subset I^X$, if $\tau^*(A_i) > 0$, then $\tau^*(\cap_{i \in J} A_i) > 0$.

Obviously we get the following theorem from Definition 2.2.

THEOREM 2.3. (1) Let τ be a gradation of supraopenness on X and $\tau^* : I^X \to I$ be a mapping defined by $\tau^*(A) = \tau(A^c)$, where A^c is the complement of A. Then τ^* is a gradiation of supraclosedness on X.

(2) Let τ^* be a gradation of supraclosedness on X and $\tau : I^X \to I$ be a mapping defined by $\tau(A) = \tau^*(A^c)$. Then τ is a gradation of supraopenness on X.

Proof. (1). (C1) Obvious. (C2) For every subfamily $\{A_i : i \in J\} \subset I^X$, if $\tau^*(A_i) > 0$, then $\tau(A_i^c) > 0$. Since τ is a gradation of supraopenness, we get $\tau^*(\bigcap_{i \in J} A_i) = \tau(\bigcup_{i \in J} A_i^c) > 0$.

(2). Similar to (1).

DEFINITION 2.4. Let τ and σ be gradations of supraopenness on X. We say that τ is finer than σ or σ is coarser than τ (denoted by $\tau > \sigma$) is $\tau(A) \ge \sigma(A)$ for every $A \in I^X$.

REMARK 2.5. Let X be a non-empty set. Let $\tau_0, \tau_1 : I^X \to I$ be defined by the rule:

 $\tau_0(0_X) = \tau_0(1_X) = 1.$

 $\tau_0(A) = 0$, for all $A \in I^X - \{0_X, 1_X\}.$

 $\tau_1(A) = 1$, for all $A \in I^X$.

Then τ_0 and τ_1 are two gradations of supraopenness on X such that for any gradation of supraopenness τ on X,

$$\tau_0 \leq \tau \leq \tau_1.$$

Let $G_s(X)$ be the set of all gradations of supraopenness on X. Then we have:

THEOREM 2.6. $(G_s(X), \leq)$ is a complete lattice.

Won Keun Min, Chun-Kee Park and Myeong Hwan Kim

DEFINITION 2.7. Let (X, τ) be an H-fuzzy supratopological space and $A \in I^X$. Then

(1) The H-fuzzy supraclosure of A, denoted by sl(A), is defined by

$$sl(A) = \cap \{ K \in I^X : \tau^*(K) > 0, A \subset K \},\$$

where $\tau^*(K) = \tau(K^c)$.

(2) The H-fuzzy suprainterior of A, denoted by si(A), is defined by

$$si(A) = \bigcup \{ K \in I^X : \tau(K) > 0, K \subset A \}.$$

THEOREM 2.8. Let (X, τ) be an H-fuzzy supratopogical space. Then for each $A, B \in I^X$

 $(1) \ si(1_X) = 1_X,$ $(2) \ si(A) \subset A,$ $(3) \ A \subset B \Rightarrow si(A) \subset si(B),$ $(4) \ si(si(A)) = si(A),$ $(5) \ si(A \cap B) \subset si(A) \cap si(B).$

Proof. (1),(2) and (3) can be obtained from Definition 2.7.

(4) For each $A \in I^X$, we get $\tau(si(A)) = \tau(\bigcup\{K \in I^X : \tau(K) > 0, K \subset A\})$ by Definition 2.7. Since τ is a gradation of supraopenness on X, we can say $\tau(si(A)) > 0$. Consequently we have si(si(A)) = si(A) from the concept of H-fuzzy suprainterior.

(5) From (2) we obtain $si(A \cap B) \subset si(A)$ and $si(A \cap B) \subset si(B)$, and so easily (5) is obtained.

The following example shows that the equality of Theorem 2.8(5) is not true in general.

EXAMPLE 2.9. Let X = I and $\tau : I^X \to I$ be defined by

$$\tau(A) = \begin{cases} 0, & \text{if } A(x) \le 1/2 \text{ for all } x \in X, \\ 1, & \text{otherwise,} \end{cases}$$

for each $A \in I^X - \{0_X\}$ and $\tau(0_X) = 1$. Now we consider two fuzzy sets A, B defined as the following:

$$A(x) = x$$
, for all $x \in X$,
 $B(x) = 1 - x$, for all $x \in X$.

Then $\tau(A) = \tau(B) = 1$, but $\tau(A \cap B) = 0$. Thus τ is a gradation of supraopennes. And we have $si(A) \cap si(B) = A \cap B$ and $si(A \cap B) = 0_X$, from the gradation τ of supraopenness. Thus $si(A) \cap si(B)$ is not equal to $si(A \cap B)$.

THEOREM 2.10. Let (X, τ) be an H-fuzzy supratopological space and $A, B \in I^X$. Then

 $(1) \ sl(1_X) = 1_X,$ $(2) \ A \subset sl(A),$ $(3) \ A \subset B \Rightarrow sl(A) \subset sl(B),$ $(4) \ sl(A) = sl(sl(A)),$ $(5) \ sl(A) \cup sl(B) \subset sl(A \cup B).$

Proof. Similar to Theorem 2.8.

The following example shows the equality of Theorem 2.10(5) is not true in general.

EXAMPLE 2.11. Let X = I and $\tau : I^X \to I$ be a gradation of suraopenness defined as Example 2.9. Let two fuzzy sets A, B be defined as the following:

$$A(x) = x, \quad \text{for all } x \in X,$$

$$B(x) = 1 - x, \quad \text{for all } x \in X.$$

Since $\tau^*(A) = \tau(A^c) = \tau(B) > 0$ and $\tau^*(B) = \tau(B^c) = \tau(A) > 0$, we have A = sl(A) and B = sl(B). Let C be a fuzzy set such that $C \neq 1_X$ and $A \cup B \subset C$. Then $\tau^*(C) = \tau(C^c) = 0$, and so $sl(A \cup B) = 1_X$. Thus we have $sl(A) \cup sl(B) \neq sl(A \cup B)$.

THEOREM 2.12. Let (X, τ) be an H-fuzzy supratopological space and $A \in I^X$. Then

(1) $(si(A))^c = sl(A^c).$ (2) $(sl(A))^c = si(A^c).$

Proof. The proof is obtained from Definition 2.7.

THEOREM 2.13. Let (X, τ) be an H-fuzzy supratopological space and $A \in I^X$. Then

(1) $\tau(A) > 0$ iff A = si(A).

(2) $\tau^*(A) > 0$ iff A = sl(A).

Proof. (1) Let $\tau(A) > 0$. Then $A \subset \bigcup \{K \in I^X : \tau(K) > 0, K \subset A\} = si(A)$. Hence we get A = si(A) from Theorem 2.6(2).

For the converse, let A = si(A). Then

$$\tau(A) = \tau(si(A)) = \tau(\cup \{K \in I^X : \tau(K) > 0, K \subset A\}).$$

Since τ is a gradation of supraopenness, we have $\tau(A) > 0$ (2) Similar to (1).

DEFINITION 2.14. Let (X, τ) be an H-fuzzy topological space and τ_s be a gradation of supraopenness on X. We call τ_s an associated gradation of supraopenness with τ on X if for every $A \in I^X, \tau(A) \leq \tau_s(A)$.

Given a gradation of openness on X, we can find an associated gradation of supraopenness with τ as the following example shows.

EXAMPLE 2.15. Let (X, τ) be an H-fuzzy topological space. Define $\tau_s: I^X \to I$ as

$$\tau_s(A) = \begin{cases} \tau(si(A)), & \text{if } A \subset sl(si(A)), \\ 0, & \text{otherwise.} \end{cases}$$

Then clearly $\tau_s(0_X) = \tau_s(1_X) = 1$. For any index set J, let $\tau_s(A_i) > 0$ for all $i \in J$. Easily we can show $\cup A_i \subset sl(si(\cup A_i))$, and from Theorem 2.8 and Theorem 2.13, we get $\tau_s(\cup A_i) = \tau(si(\cup A_i)) > 0$. Thus τ_s is a gradation of supraopenness on X. Let $\tau(A) > 0$ for $A \in I^X$. Since $A \subset sl(si(A))$ and $\tau(A) = \tau(si(A))$, we have $\tau(A) \leq \tau_s(A)$ for each $A \in I^X$. Thus τ_s is an associated gradation of supraopenness with τ .

THEOREM 2.16. Let (X, τ) be an H-fuzzy supratopological space and $Y \subset X$. Define a mapping $\tau_Y : I^Y \to I$ by

$$\tau_Y(A) = \bigcup \{ \tau(B) : B \in I^X, B/Y = A \},\$$

where B/Y is the restriction of B on X. Then τ_Y is a gradation of supraopenness on X.

146

Proof. It is clear that $\tau_Y(0_X) = \tau_Y(1_X) = 1$.

For every subfamily $\{A_i : i \in J\} \subset I^Y$. Let $\tau_Y(A_i) > 0$. Since $\{\bigcup_{i \in J} C_i : C_i \in I^X, C_i/Y = A_i\} \subset \{C \in I^X : C/Y = \cup A_i\}$, we get $\tau(\bigcup_{i \in J} A_i) > 0$.

DEFINITION 2.17. The H-fuzzy supratopological space (Y, τ_Y) is called a subsupraspace of (X, τ) and τ_Y is called the induced gradation of supraopenness on Y from τ .

THEOREM 2.18. Let (Y, τ_Y) be an H-fuzzy subsupraspace of (X, τ) and $B \in I^Y$. Then

$$(1)\tau_{Y}^{*}(B) = \bigcup \{\tau^{*}(C) : C \in I^{X}, C/Y = B\}.$$

(2) If $D \subset Y \subset X$, then $\tau_{D} = (\tau_{Y})_{D}$.

Proof.

$$\tau_{Y}^{*}(B) = \tau_{Y}(B^{c})$$

= $\cup \{\tau(C) : C \in I^{X}, C/Y = B^{c}\}$
= $\cup \{\tau(C^{c}) : C^{c} \in I^{X}, C^{c}/Y = B\}$
= $\cup \{\tau^{*}(C^{c}) : C^{c} \in I^{X}, C^{c}/Y = B\}.$

$$(\tau_Y)_D(B) = \bigcup \{ \tau_Y(E) : E \in I^Y, E/D = B \}$$

= $\bigcup \{ \bigcup \{ \tau(C) : C \in I^X, C/Y = E \} : E \in I^Y, E/D = B \}$
= $\bigcup \{ \tau(C) : C \in I^X, C/D = B \}$
= $\tau_D(B).$

References

- M. E. Abd El-Monsef and A.E Ramadan, On fuzzy supra topology spaces, Indian J. Pure. Appl. 18(4) (1987), 322–329.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1998), 182–190.
- [3] R. N. Hazra, S. K. Samanta and Chattopashyay, *Fuzzy topology redefined*, Fuzzy Sets and Systems, 45 (1992), 79–82.

[4] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353.

Won keun Min Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: wkmin@cc.kangwon.ac.kr

148

Chun-Kee Park Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: ckpark@kangwon.ac.kr

Myeong Hwan Kim Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: kimmw@kangwon.ac.kr