NOTE ON T-PARTS OF BCI-ALGEBRAS RELATIVE TO SUBSETS

Won Kyun Jeong

Abstract

In this paper, we introduce the notion of T-part of BCIalgebras relative to a subset. We show that if A is a subalgebra of a BCI-algebra X, then so is the T-part $T_{A}(X)$ of X relative to A. We provide equivalent conditions that the T-part of X relative to A is an ideal.

1. Introduction

The notion of BCK-algebras was proposed by Y. Imai and K. Iséki in 1966. In the same year, K. Iséki [I] introduced the notion of a BCIalgebra which is a generalization of a BCK-algebra. Recently, X. Zhang and Y. B. Jun [ZJ] introduced the notion of T-part in a BCI-algebra X and showed that the T-part of X is a subalgebra of X.

In this paper, we introduce the notion of T-part of BCI-algebras relative to subsets. We give equivalent conditions that the T-part of X relative to A is an ideal.

We begin with some definitions and properties that will be useful in our results.

Definition 1.1. A BCI-algebra is an algebra $(X ; *, 0)$ of type (2,0) is satisfying the following axioms for all $x, y, z \in X$:
(a) $((x * y) *(x * z)) *(z * y)=0$
(b) $(x *(x * y)) * y=0$
(c) $x * x=0$
(d) $x * y=0$ and $y * x=0$ imply $x=y$.

For any BCI-algebra X, the relation \leq defined by $x \leq y$ if and only if $x * y=0$ is a partial order on X.

A BCI-algebra X has the following properties for all $x, y, z \in X$:
(1) $x * 0=x$
(2) $(x * y) * z=(x * z) * y$
(3) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.

Definition 1.2. A non-empty subset I of a BCI-algebra X is called an ideal of X if it satisfies
(I1) $0 \in I$,
(I2) $x * y \in I$ and $y \in I$ imply $x \in I$.
It is well known that an ideal I of a BCI-algebra X need not be a subalgebra.

Definition 1.3. Let X be a BCI-algebra and let A be a non-empty subset of X. The set

$$
T_{A}(X)=\{(0 * x) * x \mid x \in A\}
$$

is called the T-part of X relative to A. If $A=X$, then $T_{X}(X):=T(X)$ is called the T-part of $\mathrm{X}([\mathrm{ZJ}])$.

Clearly, if $0 \in A$, then $0 \in T_{A}(X)$.
Example 1.4. If X is an associative BCI-algebra or a BCK-algebra, then $T_{A}(X)=\{0\}$, for every nonempty subset A of X. If X is a BCIalgebra, then $T_{G(X)}(X)=\{0\}$, where $G(X)=\{x \in X \mid 0 * x=x\}$.

Definition 1.5. [MX] An element a of X is called an atom if, for all $x \in X, x * a=0$ implies $x=a$. The set $L(X):=\{a \in$ $X \mid a$ is an atom of $X\}$ is called the p-semisimple part of X. For any $a \in L(X)$, the set $V(a):=\{x \in X \mid a \leq x\}$ is called a branch of X. The set $X_{+}:=\{x \in X \mid 0 \leq x\}$ is called the BCK-part of X.

Clearly, 0 is an atom of X. We know that $(L(X), *, 0)$ is a p semisimple BCI-algebra and $\left(X_{+}, *, 0\right)$ is a BCK-algebra. It is clear that $V(0)=X_{+}([\mathrm{MX}])$.

2. T-parts relative to subsets

Proposition 2.1. If A is a subalgebra of a BCI-algebra X, then so is $T_{A}(X)$.

Proof. Let $x, y \in T_{A}(X)$. Then $x=(0 * a) * a$ and $y=(0 * b) * b$ for some $a, b \in A$. Hence

$$
\begin{aligned}
x * y & =((0 * a) * a) *((0 * b) * b) \\
& =((0 *((0 * b) * b)) * a) * a \\
& =(((0 *(0 * b)) *(0 * b)) * a) * a \\
& =(((0 * a) *(0 * b)) * a \\
& =((0 *(a * b)) *(0 * b)) * a \\
& =((0 *(0 * b)) *(a * b) * a \\
& =((0 * a) *(0 * b)) *(a * b) \\
& =(0 *(a * b)) *(a * b) .
\end{aligned}
$$

Thus $x * y \in T_{A}(X)$. This completes the proof.
Corollary 2.2. ([ZJJ) If X is a BCI-algebra, then $T(X)$ is a subalgebra of X.

Proposition 2.3. If $A \subset B$, then $T_{A}(X) \subset T_{B}(X)$.
Proof. Let $x \in T_{A}(X)$. Then $x=(0 * a) * a$ for some $a \in A$. Since $A \subset B, x \in T_{B}(X)$. Thus, $T_{A}(X) \subset T_{B}(X)$.

Corollary 2.4. If A is a non-empty subset of X, then $T_{A}(X) \subset$ $T(X)$.

Proposition 2.5. If $f: X \rightarrow Y$ is a surjective homomorphism from a BCI-algebra X onto a BCI-algebra Y, then $f\left(T_{A}(X)\right)=T_{f(A)}(Y)$.

Proof. Let $x \in T_{f(A)}(X)$. Then $x=(0 * y) * y$ for some $y \in f(A)$. Since $y=f(a)$, there exists $a \in A$ such that $y=f(a)$. It follows that $x=(0 * f(a)) * f(a)=f((0 * a) * a)$ since f is a homomorphism. Thus, $x \in f\left(T_{A}(X)\right)$. Conversely, let $x \in f\left(T_{A}(X)\right)$. Then $x=f(a)$ for some $a \in T_{A}(X)$. Hence there exists $b \in A$ such that $a=(0 * b) * b$. Thus $x=f(a)=f((0 * b) * b)=(0 * f(a)) * f(a)$. Since $f(a) \in f(A)$, we have $x \in T_{f(A)}(X)$. This completes the proof.

Corollary 2.6. If $f: X \rightarrow Y$ is a surjective homomorphism from a BCI-algebra X onto a BCI-algebra Y, then $f(T(X))=T(Y)$.

Theorem 2.7. Let X be a BCI-algebra and let A be a non-empty subset of X. The following are equivalent :
(i) $T_{A}(X)$ is an ideal of X,
(ii) $x * a=y * a$ implies $x=y$ for all $x, y \in X_{+}$and $a \in T_{A}(X)$,
(iii) $x * a=0 * a$ implies $x=0$ for all $x \in X_{+}$and $a \in T_{A}(X)$.

Proof. (i) \Rightarrow (ii) Assume that $T_{A}(X)$ is an ideal of X and let $x * a=$ $y * a$ for all $x, y \in X_{+}$and $a \in T_{A}(X)$. Then $(x * y) * a=(x * a) * y=$ $(y * a) * y=(y * y) * a=0 * a \in T_{A}(X)$. Since $T_{A}(X)$ is an ideal of X, we have $x * y \in T_{A}(X)$, we have $x * y \in T_{A}(X)$. On the other hand, note that $x * y \in X_{+}$and $X_{+} \cap T_{A}(X) \subseteq X_{+} \cap L(X)=\{0\}$. It follows that $x * y=0$ and hence, $x \leq y$. Similarly, we get $y \leq x$, and therefore $x=y$.
(ii) \Rightarrow (iii) It is straightforward.
(iii) \Rightarrow (i) Suppose that (iii) holds. Assume that $x * y \in T_{A}(X)$ and $y \in T_{A}(X)$ for all $x, y \in X$. Denote $t=0 *(0 * x)$. Then $t \in L(X)$. Since $t=0 *(0 * x) \leq x$, it follows from (3) that $t * y \leq x * y$. Hence $x * y \in V(t * y)$. From $x * y \in T_{A}(X) \subseteq L(X)$, we have $x * y=t * y$. Thus $(x * t) * y=(x * y) * t=(t * y) * t=(t * t) * y=0 * y$. It follows from (iii) that $x *(0 *(0 * x))=x * t=0$, since $x * t \in X_{+}$. Thus $x=0 *(0 * x) \in L(X)$. Since $T_{A}(X)$ is an ideal of $L(X)$, we have $x \in T_{A}(X)$, and hence $T_{A}(X)$ is an ideal of X. This completes the proof.

Definition 2.8. ([Z]) A non-empty subset A of a BCI-algebra X is called a T-ideal of X if it satisfies :
(T1) $0 \in A$,
(T2) $x *(y * z) \in A$ and $y \in A$ imply $x * z \in A$ for all $x, y, z \in X$.
It is well known that every T-ideal of a BCI-algebra is an ideal (see, [Z, Theorem 1]), but not conversely ([ZJ]).

Lemma 2.9. ([Z]) Let A be a T-ideal of a BCI-algebra X. Then $(0 * x) * x \in A$ for all $x \in X$.

Proposition 2.10. If A is a T-ideal of a BCI-algebra X, then we have $T_{A}(X) \subseteq A$.

Proof. If $x \in T_{A}(X)$, then $x=(0 * a) * a$ for some $a \in A$. By Lemma 2.9, we have $x=(0 * a) * a \in A$. This completes the proof.

References

[I] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
[MX] J. Meng and X. L. Xin, Characterizations of atoms in BCI-algebras, Math. Japon. 37 (1992), 359-361.
[Z] X. H Zhang, T-ideal of a BCI-algebra, J. Human Educational Institute 12 (1994), 26-28.
[ZJ] X. H. Zhang and Y. B. Jun, The role of $T(X)$ in the ideal theory of BCIalgebras, Bull. Korean Math. Soc. 34 (1997), 199-204.

Department of Mathematics
College of Natural Sciences
Kyungpook National University
Daegu 702-701, Korea

