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ON BROWDER’S THEOREM

Dong Hark Lee

Abstract. In this paper we give several necessary and sufficient
conditions for an operator on the Hilbert space to obey Browder’s
theorem. And it is shown that if S has totally finite ascent and
T ≺ S then f(T ) obeys Browder’s theorem for every f ∈ H(σ(T )),
where H(σ(T )) denotes the set of all analytic functions on an open
neighborhood of σ(T ).

1. Introduction

Throughout this note let B(H) and K(H) denote respectively the
algebra of bounded linear operators and the ideal of compact operators
acting on an infinite dimensional Hilbert space H. If T ∈ B(H) write
N(T ) and R(T ) for the null space and range of T ; σ(T ) = dim N(T );
β(T ) = dim N(T ∗); σ(T ) for the spectrum of T ; π0(T ) for the set of
eigenvalues of T ; π0f (T ) for the eigenvalues of finite multiplicity; π00(T )
for the isolated points of σ(T ) which are eigenvalues of finite multiplicity;
p00(T ) = σ(T )\σb(T ) for the Riesz points of T . An operator T ∈ B(H)
is called Fredholm if it has closed range with finite dimensional null space
and its range of finite co-dimension. The index of a Fredholm operator
is given by

i(T ) = σ(T ) = α(T )− β(T ).

An operator T ∈ B(H) is called Weyl if it is Fredholm of index zero.
An operator T ∈ B(H) is called Browder if it is Fredholm “of finite
ascent and descent”: equivalently ([9], Theorem 7.9.3]) if T is Fredholm
and T − λI is invertible for sufficiently small λ 6= 0 in C. The essential
spectrum, the Weyl spectrum σe(T ) and the Browder spectrum w(T ) and
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the Browder spectrum of σb(T ) of T ∈ B(H) are denoted by ([8],[9])

σe(T ) = {λ ∈ : T − λI is not Fredholm };
w(T ) = {λ ∈ : T − λI is not Weyl };

σebT ) = {λ ∈ : T − λI is not Browder } :

evidently
σb(T ) ⊆ w(T ) ⊆ σb(T ) = σ(T ) ∪ acc σ(T ),

where we write acc K for the accumulation points of K ⊆ C.
We say that Weyl’s theorem holds for T ∈ B(H) if

σ(T ) \ w(T ) = π00(T ),(1.1)

and that Browder’s theorem holds for T ∈ B(H) if

σ(T ) \ w(T ) = p00(T ).(1.2)

An opeator T ∈ B(H) is a Gm-operator (m ≥ 1) if there exists a
constant M such that

‖ (T − λI)−1 ‖≤ M

(d(λ, σ(T ))))m
for every λ 6∈ σ(T ).

The condition Nλ is said to be satisfied at a particular λ if

N(T − λI) ∩N([((T − λI)∗)n]

is nontrivial for some positive integer n, which may depend on λ.
An operator T ∈ B(H) is said to be dominant if for every λ ∈ C there

exists a constant Mλ such that

(T − λI)(T − λI)∗ ≤ Mλ(T − λI)∗(T − λI)

and an operator T ∈ B(H) is said to be paranormal if

‖ Tx ‖2≤‖ T 2x ‖ for all x ∈ H.

In particular, T is called totally paranormal if T − λI is paranormal
for every λ ∈ C. X ∈ B(H) is called a quasiaffinity if it has trivial
kernel and dense range. S ∈ B(H) is said to be a quasiaffine transform
of T ∈ B(H) (notation:S ≺ T ) if there is a quasiaffinity X ∈ B(H) such
that XS = TX. If both S ≺ T and T ≺ S, then we say that S and
T are quasisimilar. An operator T ∈ B(H) has totally finite ascent if
T − λI has finite ascent for each λ ∈ C. It is known that if T ∈ B(H)
then we have :

Weyl’s theorem ⇒ Browder’s theorem.
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2. Main Results

Theorem 2.1. Let T ∈ B(H). Then the following statements are
equivalent:

(i) T obeys Browder’s theorem;
(ii) σ(T )\w(T ) ⊂ iso σ(T );
(iii) γT (λ) is discontinuous for each λ ∈ σ(T )\w(T ), where γT (·) de-

notes the reduced minimum modulus;
(iv) Every λ ∈ α(T − λ1I) satisfies the condition Nλ;
(v) T − λI has finite ascent for each λ ∈ σ(T )\w(T ).

Proof. (i) ⇔ (ii) : If T obeys Browder’s theorem then

λ ∈ σ(T )\w(T ) = p00(T ) ⊂ iso σ(T ).

Conversely, suppose λ ∈ σ(T )\w(T ). Then T − λI is Weyl. But λ ∈
iso σ(T ); hence by the punctured neighborhood theorem λ ∈ σb(T ).
Therefore T obeys Browder’s theorem.

(ii) ⇔ (iii) : If T obeys Browder’s theorem then it follows from [6,
Lemma 5.52] that γT (λ) is discontinuous for each λ ∈ σ(T )\w(T ). Con-
versely, suppose γT (λ) is discontinuous for each λ ∈ σ(T )\w(T ). Let
λ0 ∈ σ(T )\w(T ). Then T − λ0I is Weyl and α(T − λ0I) > 0. There-
fore γT (λ) > 0 for all λ near λ0, and so by [6, Cor 5.74] α(T − λI) <
α(T − λ0I); for otherwise γT (λ) would be continuous at λ0. Since all
nearby walues λ are also in σ(T )\w(T ), the discontinuity of γT (λ) re-
quires that α(T − λI) = 0 in σ(T )\w(T ). Therefor λ0 is an isolated
point of σ(T ).

(i) ⇔ (iv) : The forward implication follows from [7, Theorem 1].
Conversely, suppose λ0 ∈ σ(T )\w(T ). Then T − λ0I is Weyl and α(T −
λI > 0). Since every λ ∈ σ(T )\w(T ) satisfies the condition Nλ, by the
punctured neighborhood theorem there exists a neighborhood N(λ0 : p)
for some p > 0 such that α(T − λI) is constant (say n0) on N(λ0 :
p\{λ0}) and 0 ≤ α(T − λI) < α(T − λ0I). We now claim that n0 = 0.
Assume to the contrary that n 6= 0. Also by the punctured neighborhood
theorem there exists a neighborhood N(λ0 : q) for some q > 0 such that
λ1 ∈ N(λ0 : q)\{λ0} implies α(T − λ1I) > 0 and T − λ1I is Weyl. Thus
we have λ1 ∈ σ(T )\w(T ). Now by the same reason as for λ0, there exists
a neighborhood N(λ1 : γ) for some γ > 0 such that α(T −µ) is constant
(say n1) and 0 ≤ α(T − µ) < α(T − λ1I). Thus

λ ∈ [N(λ0 : q) ∩N(λ1 : γ)]\{λ0, λ1} ⇒ α(T − λI) = n1 < n0,
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a contradiction, Therefore n0 and hence λ is an isolated point of σ(T ).
Hence it follows from (ii) that Browder’s theorem holds for T .

(i) ⇔ (v) : if T obeys Browder’s theorem then σ(T )\w(T ) = p00(T ).
Therefore T − λI has finite ascent for each λ ∈ σ(T )\w(T ). Conversely,
suppose T − λI has finite ascent for each λ ∈ σ(T )\w(T ). Then by the
Index Product Theorem,

α((T − λI)n)− β((T − λI)n) = i((T − λI)n) = n · i(T − λI) = 0.

Thus if α((T − λI)n) is a constant then so is β((T − λI)n). Therefore
T − λI is Browder. Thus T obeys Browder’s theorem.

We can’t expect that Weyl’s theorem holds for operators having to-
tally finite ascent. Consider the following example: let T ∈ B(l2) be
defined by

T (x1, x2, x3 · · · ) = (0, x1,
1

2
x2

1

3
x3, · · · ).

Then T is a dominant operator, and so T has totally finite ascent. But
σ(T ) = w(T ) = {0} and π00(T ) = φ; Hence Weyl’s theorem doesn’t hold
for T . However, Browder’s theorem performs better:

Corollary 2.2. Suppose S ∈ B(H) has totally finite ascent and
T ∈ B(H) satisfies T ≺ S. Then f(T ) obeys Browder’s theorem for
every f ∈ H(σ(T )). In particular if S is a dominant operator and
T ≺ S then Browder’s theorem holds for f(T ) for every f ∈ H(σ(T )),
where H(σ(T )) denotes the set for all analytic functions on an open
neighborhood of σ(T ).

Proof. Since T ≺ S, there exists a quasiaffinity X ∈ B(H) such that
XT = SX. But S has totally finite ascent; hence for each λ there exists a
natural number nλ such that N((S−λI)nλ) = N((S−λI)nλ+1). We claim
that N((T −λI)nλ) = N((T −λI)nλ+1). Let x ∈ N((T −λI)nλ+1). Then
N(T − λI)nλ+1x = 0 , and so (S − λI)nλ+1Xx = X(T − λI)nλ+1x = 0.
Then (T −λI)nλ+1x = 0, and so (S−λI)nλ+1Xx = X(T −λI)nλ+1x = 0.
Therefore, Xx ∈ N((S − λI)nλ+1) = N((S − λI)nλ), and so. (S −
λI)nλXx = 0. Since X(T − λI)nλx = 0 and X is a quasiaffnity x ∈
N(T − λI)nλ . Since T has totally finite ascent, it follows from Theorem
2.1 that . w(T ) = σb(T ). Let f ∈ H(σ(T )). We shall show that
w(f(T )) = σb(f(T )). Since w(f(T )) ⊂ f(w(T )) for every f ∈ H(σ(T ))
with no other restriction on ([5, Theorem 2]), it suffices to show that
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f(w(T )) ⊂ w(f(T )). Suppose λ 6∈ w(f(T )). Then f(T ) − λI is Weyl
and

f(T )− λI = c(T − α1I)(T − α2I) · · · (T − αnI)g(T ),(2.3)

where c, α1, α1, · · · , α1 ∈ C and g(T ) is invertible. Since the operators in
the right side of (2.3) commute, T − αi is Fredholm. Now we show that
i(T − αi) ≤ 0. Observe that if A ∈ B(H) is Fredholm of finite ascent
then i(A) ≤ 0: indeed, either if A has finite descent then A is Browder
and hence i(A) = 0, or if A does not have finite descent then

n · i(A) = α(An)− β(An) → −∞ as N → −∞,

which implies that i(A) < 0. Therefore λ 6∈ w(f(T )), and hence f(w(T ))
= w(f(T )). Hence σb(f(T )) = f(σb(T )) = f(w(T )) = w(f(T )), and so
Browder’s theorem holds for f(T ). If S is a dominant operator, then
N(S − λI) ⊂ N(S − λI) for all λ ∈ C. Therefore S has totally finite
ascent, and hence the conclusion is evident from the previous assertion.

Corollary 2.3. Let T ∈ B(H) be a Gm-operator. If T has totally
finite ascent then f(T ) obeys Weyl’s theorem for every f ∈ H(σ(T )).

Proof. Since T has totally finite ascent, it follows from Theorem 2.1
that T obeys Browder’s theorem. But T is a Gm operator, it follows
from [10, Theorem 14] that T obeys Weyl’s theorem. Let f ∈ H(σ(T )).
Then by Corollary 2.2 f(w(T )) = w(f(T )) Remembering([13, Lemma])
that if T is isoloid then

f(σ(T )\π00(T )) = σ(f(T ))\π00(f(T ))

for every f ∈ H(σ(T )). Hence

σ(f(T ))\π00(f(T )) = f(σ(T )\π00(T )) = f(w(T )) = w(f(T )),

which implies that Weyl’s theorem holds for f(T ) .

Recall that if T ∈ B(H) and F is a closed subset of then we define
a spectral subspace as follows :

HT (F ) =

{x ∈ H | (T − λI)f(λ) = x has an analytic solution f : C\F → H}
Theorem 2.4. Let T ∈ B(H). If HT ({λ}) = N(T − λI) for every

λ ∈ π0f (T ), then T obeys Weyl’s theorem.
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Proof. Let λ ∈ σ(T )\w(T ). Then λ ∈ π0f (T ), and so HT ({λ}) =
N(T − λI). Since HT ({λ}) is invariant under T , T can be represented
as the following 2×2 operator matrix with respect to the decomposition
HT ({λ}) ⊕

HT ({λ})⊥:

T =

(
λ T1

0 T2

)
.

Since HT ({λ}) is finite dimensional, T2 − λI is invertible λ ∈ iso σ(T ),
and hence λ00(T ). Conversely, let λ00(T ). Then using the spectral pro-
jection,

P =
1

2πi

∫

∂D

(T − λI)−1dλ,

where D is an open disk of center λ which contains no other points of
σ(T ), we can represent T as the direct sum

T =

(
T1 0
0 T2

)
, where σ(T1) = {λ} and σ(T2) = σ(T )\{λ}.

Since P (H) = {x ∈ H : lim ‖T−λI)nx‖ 1
n = 0} = HT ({λ}) and HT ({λ})

is finite dimensional, w(T ) = w(T2). But T − λI is invertible; hence
T − λI is Weyl. Therefore λ ∈ σ(T )\w(T ).

Corollary 2.5. If T ∈ B(H) is a totally paranormal operator then
Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. If T is totally paranormal, then it follows from [11, Corollary
4.8] that HT ({λ}) = N(T −λI) for every λ ∈ C. Therefore by Theorem
2.4 Weyl’s theorem holds for T . But T has totally finite ascent and T
is an isoloid; it follows follows from the proof of Corollary 2.3 that f(T)
obeys Weyl’s theorem.
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