건조 공정 중 요소 수지 성형재료의 경화 특성에 대한 물질전달 효과

The Effect of Mass Transfer on the Cure Properties of the Urea Resin Moulding Compounds Under the Drying Process

  • 김상렬 (동아대학교 공과대학 재료금속화학공학부) ;
  • 최일곤 (동광화학(주)) ;
  • 김병철 (동아대학교 공과대학 재료금속화학공학부)
  • Kim, Sang Yeul (Division of Metallurgical and Chemical Engineering, Dong-A University) ;
  • Choi, Il Gon (Dong Kwang Chemical Co., Ltd.) ;
  • Kim, Byoung Chul (Division of Metallurgical and Chemical Engineering, Dong-A University)
  • 투고 : 2002.01.10
  • 심사 : 2002.08.07
  • 발행 : 2002.12.01

초록

산업 현장에서 이론적인 건조방법이 실제와는 차이가 많고 또한 배기가스의 재순환이 폐열을 이용하는 목적으로 열원의 절감에는 경제적이지만 이들 파라미터에 따른 요소수지 성형화에 미치는 영향을 연구한바가 없다. 따라서 요소 수지 성형재료의 경화 특성을 건조와 성형 공정 중의 건조온도와 시간, 배기가스 재 순환률 및 성형온도에 따라 실험하여 다음과 같은 결과를 얻었다. 성형재료의 수분함량은 건조 시간과 건조 온도가 증가함에 감소하고, 건조속도는 배기가스 재 순환률이 증가하면 감소한다. 특히 경화유동도는 배기가스의 재 순환량, 건조온도 및 성형온도가 증가하면 감소한다. 또한 건조온도, 건조시간, 배기가스의 재 순환량 및 성형온도에 따라 수분함량과 경화유동도에 대한 상관식을 구하여 재현성있는 최적의 조건을 구명하였다.

In the industrial field, the theory of drying process is different from the practical application, and it is effective to reduce energy by recirculation of the heat of exhausting gas. But the study of this field may not be performed still. The cure properties of the urea resin moulding compounds was investigated according to drying temperature, drying time, recycle rate of exhausting gas and moulding temperature in the process of drying and moulding. We obtained the following results; water content of material decreases with increasing drying time and drying temperature, and the rate of drying also decreases with increasing recycle rate of exhausting gas. Specially, The cure fluidity of the urea resin moulding compounds decreases, with increasing drying temperature, recycle rate of exhausting gas and moulding temperature. And the correlation equations on water content and cure fluidity of the urea resin moulding material were obtained through a regression analysis of experimental data.

키워드

과제정보

연구 과제 주관 기관 : 동아대학교

참고문헌

  1. Mod. Plast v.49 Rager, R
  2. Journal of Polymer Science Polymer Chemistry Edition v.11 no.5 Kopf, P;Wagner, E https://doi.org/10.1002/pol.1973.170110503
  3. Sail v.8 Bainbridge, R
  4. Journal of Applied Polymer Science v.10 no.8 Gordon, M;Halliwell, A;Wilson, T https://doi.org/10.1002/app.1966.070100807
  5. Polymer v.9 The addition stage in the melamine-formaldehyde reaction: Computer fittings to the non-random model Aldersley, J. W;Gorden, M;Halliwell, A;Wilson, T https://doi.org/10.1016/0032-3861(68)90044-X
  6. U. S. Patent 3,458,464 Shriver, D. S;Bara, E. J
  7. British Polymer Journal v.1 no.1 Anderson, I. H;Cawely, M;Steedman, W https://doi.org/10.1002/pi.4980010104
  8. Journal of Applied Polymer Science v.18 no.5 Shenai, V. A;Manjeshwar, J. M https://doi.org/10.1002/app.1974.070180511
  9. J. Coatings Technol v.51 Blank, W. J
  10. Modern Plastics Encyclopedia Agranoff, J
  11. Polymer Journal v.5 no.2 STUDIES ON MELAMINE RESIN EM DASH 7. KINETICS OF THE ACID-CATALYZED CONDENSATION OF DI- AND TRIMETHYLOLMELAMINE Sato, K;Naito, T https://doi.org/10.1295/polymj.5.144
  12. Journal of Polymer Science Polymer Chemistry Edition v.13 no.1 Sato, K;Abe, Y https://doi.org/10.1002/pol.1975.170130124
  13. U. S. Patent 3,661,819 Koral, J. M;Petschel, M
  14. U. S. Patent 3,803,095 Calbo, L. J;Koral, J. N
  15. J. Paint Technol v.46 Calbox, W. J;Hensley, W. L
  16. Journal of Applied Polymer Science v.24 no.5 ANALYSIS OF AMINO RESINS BY CARBON/NITROGEN ANALYZER EM DASH 1. MOLE RATIOS OF COMPONENTS Rybicky, J;Kamanis, S. M https://doi.org/10.1002/app.1979.070240613
  17. Proceedings of the TAPPI Papermakers Conference Zunker, D. W