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Abstract. This paper proposes a new algorithm for estimating ARMA model parameters. In estimating ARMA
model parameters, several methods such as generalized least square method, instrumental variable method have
been developed. Among these methods, the utilization of a bootstrap type algorithm is known as one of the
effective approach for the estimation, but there are cases that it does not converge. Hence, in this paper, making
use of a cross correlation function and utilizing the relation of structural a priori knowledge, a new bootstrap
algorithm is developed. By introducing theoretical relations, it became possible to remove terms, which is liable
to include much noise. Therefore, this leads to robust parameter estimation. It is shown by numerical examples
that using this algorithm, all simulation cases converge while only half cases succeeded with the previous one.
As for the calculation time, judging from the fact that we got converged solutions, our proposed method is said
to be superior as a whole,

Keywords: time series analysis, ARMA model, autocorrelation function, cross correlation function, estimation

algorithm
1. INTRODUCTION our improvements,
A (p, g) order ARMA model is stated as
In the system identification method, using Auto-
regressive Moving Average (ARMA) models or Auto- X +ia, Y. —e +Eq:'b” e (1
regressive Moving Average with exogenous input (ARMAX) g = s
models, system parameters are estimated on the basis of where

the past time series data. Several algorithms for obtaining
unbiased estimate have been developed.

In this paper, we first present the mathematical
model, make clear the discussing points and then propose ~ {e,}: Gaussian white noises with mean 0, variance 0

{x.}: Sample process of stationary ergodic Gaussian
process x(f)(n=1,2, -+, N, -+-)

t: Corresponding Author
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A)=1+az" + - +apz_P

B(z)=1+biz" + e+ bz

Assume that A(z), B(z) are irreducible and satisfy
stationary, invertibility, strictly positive realness condi-
tions.

Eq. (1) may be said a model which does not have a
control input in the general ARMAX model such as:

Xyt ayx,1t o tapx,,
= Uy- +oeee ot Conhp—m (2)
+ e,,+ ble,,_1+ e+ bqe,,_q

In estimating parameters {a.}, {b} of Eq. (1), the
right hand side of the equation is itself a colored noise.
Therefore, it should be noted that a biased estimation is
obtained by using the least square method. In order to
obtain an unbiased estimate, extended least square method,
generalized least square method, sequential maximum
likelihood method, instrumental variable method, and
“pseudo linear regression method have been developed
(Tokumaru et al., 1982; Katayama, 1994).

In pseudo linear regression method, it utilizes
bootstrap method and make iterative calculation. However,
it has a difficulty that there are many cases that these
iteration do not converge (Sagara ef al., 1994; Katayama,
1994).

In this paper, we propose an improving method for
that problem. By utilizing this method, the total calculation
time can be reduced. Introducing the cross correlation
function of output and noise, and also using the theoretical
relation, the above improvement is achieved.

As for the shortening the calculation time, Nakamura
and Oishi (1984) proposed a method to use the generalized
least square method. They considered an input-output
system with noise. Generally, we often have time series
data of output and do not have control input. Therefore, in
this paper, we consider the system with the following
viewpoints. Using cross correlation function and utilizing
a priori knowledge of the structural character of the
model, we can get robust parameter estimation. Conver-
gence probability is higher than that of the previous
method. Therefore, we can achieve a reduction of total
time to get the solution that converges.

Thus, there have been papers corresponding to this
theme but there are no papers as we propose.

In section 2, we propose a robust system identifi-
cation algorithm of bootstrap type utilizing cross correla-
tion functions. In section 3, we state the relation between
our method and the maximum likelihood method. In
section 4, we show a pseudo linear regression method for
the comparison with our new method. Numerical examples
are given in section 5.
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2. PARAMETER ESTIMATION OF ARMA
MODEL USING CROSS CORRELATION
FUNCTION

By definition, the auto correlation function of {x,} is
stated as

Rk =E[xnxrt+k ] (3)

R =Ry C))

Because {e,} is Gaussian white noise, the cross correla-
tion function of {x,} and {¢} are

Tex (l) = E[enan] = T}

T\e (l) = E[‘xn enH] = T—l
Te\' (_l) = E[en‘xn—l ] = T—I (5)
Txe (l) = E['xnen-l] = T‘I
As for {e}, {e},
E[ekek+l]=E[ek+lek]:Sl (6)
Ef?]=0?=5, (7)

7_;, S; (1> 0) ought to be 0 theoretically. However, if
they are estimated under finite number of data, they
usually have non-zero value.

It is well known that p and ¢ of Eq. (1) satisfy p<gq
when ARMA process is expressed in state space expres-
sion under moderm control theory (Tokumaru and Takeyasu,
1977). For simplicity, let p = ¢ hereafter. Then Eq. (1) is
expressed as

14 4
X, = —2(1ix,,_i + ij €., e, 8)
=1 Jj=1

Define Z,, 0, as

Z, =[_xn—1’ T X pr€ns "”en—p]r ©)
bxref
0, =[a1, @, by, ...,bp]r

(10)
_ LIT BT ]T
Then Eq. (8) is expressed as

x,=0,"Z, +e, (11)

Let éN be the & which minimizes
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=3k, -67z, (12)
n=1

then éN is given by

-1
6 ={iz,,z,f} iZ,,x,l (13)
n=1

n=l

Let N—oo, then the right hand side of Eq. (13) is
expressed, with the help of the autocorrelation functions
of {x;} and cross correlation functions {x,} and {e} as

follows
a R -1 [-r
b| |-TT ol | ¢ (14)
where
(R, R, R,
[ Rpt Rpa Ry
TO Tl Tp—l
|0 T T,,
[0 0 Ty

r=[R1’R2»""Rp]T, t=[T1’T2"“’Tp]T

From Eq. (14), the following equations are obtained.
Ra—1b =-r (15)
-TTa+0,’b=¢ (16)

From Eq. (16), we get

b=—(+Ta)
. o

(17

e

Putting this into Eq. (15), we get

-1
a=|R-—1r7 | | L | )
a(’ O'(v’

We can get b by substituting this to Eq. (17).

Entire parameter estimation algorithm can be expressed
as shown in Table 1.

As T is an upper triangular matrix, the calculation
time can be shortened by using its characteristics. In the
previous estimation method, parameter estimation is done
by using the full matrix of T. Here we utilize a priori

Table 1. Parameter estimation algorithm

Stepl : Calculate auto correlation function {f"k } by
observed data {x,}

Step2 : || Set initial values for {e,}

Step3 : | Calculate cross correlation function {f,}

Step4 : | Estimate 4, ¢ from Eq. (17), (18)

Step5 ¢ || Estimate {e,} from Eq. (8)

Step6 : | Iterate step 3, 4, 5 until 4® and ¥ converge

knowledge of the structural character of the model, then

+ Robust solution
« Shortening calculation time

can be expected.
When we use Egs. (5)-(7), the corresponding equation

to Eq. (14) is
a R T [-r
(HE IR e

where
Ry R R,
R= R.l R.o Rp—2
_Rp—l Rp—z Ry
To T1 p—1
e T, T.O Tp'_2
_T-(p—u T-(p-l) T,
s, Sy e S,y
§= S S.o o Sp
Sty Sepeny -+ So

r= [RI’RZ’"' ’Rp]r’ t= [TI’TZ"" ’Tp]r

Re-writing them, the following equations are
derived.

Ra—Th=-r (20)
~TTa+Sb=t @21

By Eq. (21), it follows
b=5"(+77a) (22)

Substituting this to Eq. (20), it follows
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a=R-Ts 17" ) (Fs-1¢-r) (23)

Substituting this to Eq. (22), we can get b.

3. RELATIONSHIP WITH MAXIMUM LIKELI-
HOOD ESTIMATION

Maximum Likelihood Estimation Algorithm using
Gauss-Newton method is as follows.

N N
s@=Ye> =Y x,-0"2,f 4)
n=1 n=1

Make iteration by

(i +1)
2’s J" as.
0008" |, 00
| <~ de, de,
=00 [2 o0 aa’]

n=1

= 00)-
' [ o 25)

L e,
2

(10} n=1

-1

(1)

Minimum least square estimate of Eq. (24) is given by

. N , 1y
Oy =[ZZnZn } Y Z,x, (26)
n=1 n=l

The following recursive estimation algorithm using
the above relation gives an approximate maximum likeli-
hood estimation (Tokumaru ef al., 1982).

~

szpN—IzAN [1+£NTPN—12N ]‘4
Py= [I_kNZNT]:pN_I

JéN PR R N

When N—oo, Eq. (24) is expressed as
- R -T
lim S(0)=R,~207| —- |+07 0
Lim 5(0) =R, [ ; ] ~TT 6] (27

Eq. (26) is expressed as

~ R ~T | -r
. N _ -r
T I o
while
oS -r R -T
— =2 —(+2 0
36 [ t ] {—TT o-ezl:l 9)
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9%s R -T
—aaaaTzz—TT 21 (30)

Eq. (25) becomes

. [ R -TT
O+ =00)—- _T7 67

e

31
TR, 31)
t | |-T" o1
Therefore, utilizing the relation of Eq. (28), Eq. (31)
becomes

06 +1) — 0(i) (32)

This means that it is because Eq. (32) has reached
the equilibrium point in N—oo.

The new method stated in the previous section is said
that it has utilized the relation of the equilibrium point in
N—co, That is to say that the new method uses the
following relation.

T is a triangular matrix (7-, =0) in Eq. (30), and §
(defined below Eq. (19)) is a diagonal matrix (S, =0 28
=0 (/> 0)) and that leads to Eq. (14) which is the same
form as Eq. (28).

Using finite data, we calculate {ﬁ,}, {f,}which is
not real R;, T,. So the iterative calculation becomes mean-
ingful.

4. PSEUDO LINEAR REGRESSION METHOD

Here, we show the pseudo linear regression method
for a comparison sake. Set,

P,0) =(x, 10X, ppie,,)  (33)

0(n,0)" = (al,'--,a,,’bw-’bp) (34)
We get
1 r
LY om0k, -9 w00 @)
n=1

~ N ~ o ~ ml N A
0" = iZgo(n,o"))q;’(n,a(”) iZqo(t,a"’)xn
N n=1 N n=1
(36)
Using Eq. (36), we calculate the pseudo linear
regression vector. We repeat this which is known as a

bootstrap method (Katayama, 1994). Eq. (36) corresponds
to Eq. (19).
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- 5. NUMERICAL EXAMPLES

5.1 Numerical Calculation

We use a (2, 2) order ARMA model in Eq. (1) and
examine in three types (Table 2).

Conditions to be satisfied are as follows, which are
stated in section 1.

Table 2. Numerical models

Parameters
Model a a by by
Model 1 -1.5 0.7 -0.6 0.3
Model 2 -14 0.6 =05 0.2
Model 3 -12 0.4 -0.4 0.2

» Stationarity condition; root of A(z) exist inside the
unit circle

« Invertibility condition; root of B(z) exist inside the
unit circle

« Strictly Positive Realness condition; |b| + | b2 | <1

Model 1 has a root close to the boundary, which
makes the system identification rather hard. We suppose
that model 2, 3 are much easier in system identification.

Table 3 shows the result of 100 times simulations
with different initial state of {e,} on the data N =1000,
3000, 5000, 10000 for each.

In generating time series data, the first 100 data are
ignored and we use MATLAB for calculation. The
proposed method is the one which uses Egs. (14)-(18) and
the previous method is the one stated in section 4.

Hereafter, we examine;

1. Convergence ratio
2. Parameter estimation accuracy
3. Calculation time

We first compare the convergence ratio (Table 3).
Each case contains 100 times simulations, so the number
in each column of the Table 3 is given in percent.

In the previous method, all cases diverge on model 1
which is hard to identify. Even in model 2, it converges in
the case V= 1000. But when the number of data increase,
only 5% for N = 3000 and 0% for the case more than N =
5000 converge.

In model 3, the convergence ratio is nearly 100%.
Thus, the convergence ratios by the previous method
differ remarkably by the model or the number of data.

On the other hand, the convergence ratio of the
proposed method is 27.25%, 26.25%, 36.75% for each
model 1, 2, 3, and they are all near around 30%.

In all cases, the proposed method converges within

Table 3. Comparison of convergence ratio

N
Model Av.
1000 3000 5000 | 10000

Model 1

Proposed 33 19 27 30 27.25
Previous 0 0 0 0 0
Model 2

Proposed 31 23 26 25 26.25
Previous 100 5 0 0 26.25
Model 3

Proposed 47 35 30 35 36.75
Previous 100 100 100 99 99.75

the range of nearly 20% to 50%.

It suggests that even if there is a case which does not
converge, varying initial data, the converged solution can
be obtained within 3 or 4 trials. Therefore, it can be said
that the proposed method is a quite robust system
identification algorithm compared with the previous
method.

The convergence ratio is very low for every case of
model 1 and for each case of model 2 with data more than
N =3000 in the previous method of Table 3. This is because
that in the non-convergence case, the estimation accuracy
of ¢ is not good and p" which is estimated next does
not satisfy strictly positive realness condition. Generally,
when g and p® are estimated in the state like above,
further iterative estimation diverse. The reason of this is
as follows.

For simplicity, set initial value of ¢, ¢; to be zero,
Denote left hand side of Eq. (1) in (2, 2) order ARMA
model as

X,=x,+Y ax,, (37
=1
then it follows
e; =X,
e, =X,-hX,
es=X;—bX,+(b’-b)X, (3%)

es =Xy —b Xy + (b2 -b)X, —b (b} —2b)X,

Thus, terms are attached to the equation accumu-
latively as i for e, increases. In this case, strictly positive
realness condition is :

1, 1+16, 1< 1 (39)

Watching Eq. (38), for the case that does not satisfy
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strictly positive realness condition such as || >1,|b2]>  Table 4. Comparison of parameter estimation accuracy

1, {e} diverse. We also confirmed above relation in the

numerical experiments. i
There are the following dual phase characteristics in 1000 ‘ 3000 l 3000 I 10000

the data amount of N and parameter estimation. As N Model 1

grows big, parameter estimation accuracy becomes good,

which is stated later. On the other hand, when N grows J_" 0.0343 1 0.0367 | 0.0054 | 0.0054
big, divergence possibility of {e.} grows big because Proposed | 7, | 0.0544 | 0.0447 | 0.0254 | 0.0147
accumulative terms are attached as we have examined J 0.0887 | 0.0814 | 0.0308 | 0.0201

H

before. This becomes one of the reasons for the decrease
of convergence ratio. Therefore, it can be safely said that
when N grows big, the convergence ratio is not
necessarily improved. In the proposed method of Table 3, - - - =

Previous | J, - - - -

even if NV grows big, convergence ratio is not necessarily Model 2
improved. —

Another simulation case shows that the convergence Jo | 0.0442 | 0.0435 | 0.0068 | 0.0309
ratio is 20% under N =1000, 30% for N =3000, 20% for Proposed | 7, | 0.0398 | 0.0376 | 0.0386 | 0.0211
N=10000. After watching many simufation cases, we J 0.0840 | 0.0811 | 0.0454 | 0.0520
cannot find certain common characteristics. Their conver- —
gence ratio varies from the range of 20% to 50%. We must J, | 0.0817 | 0.0355 - -

have much more investigation to understand characteristics. Previous » | 0.0511 ] 0.0339 - -

In Table 3, the proposed method exhibits a stable 7 0.1328 | 0.0694 - -

convergence ratio of nearly 30%, but the previous -

method's convergence ratio varies extremely. This is Model 3

because initial estimation of ‘" is nearly the same in the J, | 0.0947 | 0.1432 | 0.1546 | 0.0408
previous method even when we make 100 times simula- Proposed | J, | 0.1133 | 0.0926 | 0.1050 | 0.0496
tion. Therefore, if the initial estimation of g*" is appropriate, 7 0.2080 | 0.2358 | 0.2596 | 0.0904
it converges. Other simulation is similar. So, convergence —

ratio goes to 100%. If not, it goes to 0. On the other hand, J, | 0.1025 | 0.1382 | 0.1515 | 0.0356
initial estimation of ¢ is properly scattered in proposed Previous | J, | 0.1176 | 0.0901 | 0.1033 | 0.0468
method. So, convergence ratio does not go extremely as 7 0.2201 | 0.2283 | 0.2548 | 0.0824

the previous method. One reason for this is, some
estimation may become worse by setting 7-; to 0 in Eq.
(5) among many simulation cases. By improving this,
convergence ratio may be improved., Table 5. Comparison of calculation time
At this stage, proposed method shows good
improvement that nearly 30% converge for all cases. We
make great progress for practical use. Improvement of Model 1000 3000 5000 10000
convergence ratio is our further issue to be investigated. Model 1
Next, we compare the parameter estimation accuracy.
Table 4shows the average of the following parameter Proposed | 199132 | 36.7894 | 27.4806 | 38.0886
estimate; Previous - - - ~

Model 2
Proposed | 2.0088 12.7160 | 12.0292 | 37.7286

- : cases which does not converge

N

7, =i ~a|+]a; ~a)

J, = |z§, -bl[+ b, b, Previous | 19532 | 84582 - ~
J=J,+1, Model 3
Proposed | 2.0509 | 14.2467 | 19.6144 | 22.9011
J,, J,and J are the averages. Previous | 1.5437 | 8.4854 | 12.1460 | 19.9935

Estimation accuracy becomes good as the number of
data grows large. With same number of data, both
methods do not have much difference.

Finally, we make a comparison between the calcula-  the average calculation time of the converged cases.
tion times of both methods. In Table 5, each column holds As a whole, calculation times decrease from model 1

- cases which does not converge
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to 3, accordingly.

As the number of data grows large, the calculation
time grows big which is a matter of course. Comparing
the proposed method to the previous method, calculation
time of previous method is slightly short in the converged
cases. But converged cases and non-converged cases are
mixed, so simple comparison is meaningless.

Though there are cases which converge and cases
which do not converge, convergence cases are said to be
better even if they take rather long calculation time.

Our aim is to get a converged solution, so comparing
the time by which to grasp convergence case firstly is
reasonable. In that case, as the previous method has many
cases which do not converge, proposed method has
shotter calculation time.

5.2 Remarks

As is shown in Table 3, every cases of the proposed
method converge and each case, nearly 30% converge
under different initial values. On the other hand, the
previous methods have only half cases of convergence.

By introducing theoretical relations, we can neglect
noisy terms which otherwise exist under finite number of
data. So, this leads to robust parameter estimation. As for
calculation time, considering the time by which we get
converged solution, this proposed method, which has
converged in all cases, is said to be a superior solution.

In the algorithm of Table 1, a, b are estimated after
estimating cross correlation function {7i}. When {7} are
constant, the proposed algorithm converges as is proved
in Appendix. In this paper, this is not the case, but is
attached for reference.

6. CONCLUSION

In estimating ARMA model parameters, several
beotstrap methods have been developed. However, there
are many cases that they do not converge. This paper
presents an improving method for this problem. Using
cross correlation functions and utilizing an a priori
knowledge of the structural characteristics of the model,
we get robust parameter estimation. We can achieve the
reduction of total time to get the solution which
converges. We suppose that further extensions of this
method to such as ARIMA model would be made from
oW on.
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APPENDIX

Here, we examine the characteristics of algorithms of
bootstrap type in estimating [ay by] r

For simplicity, we remove ~ on the estimated
parameter.

In the case {h} =0, Eq. (1) becomes an AR model
and a is expressed as

a=-R7'r (40)

So, we use this as an initial value of . From Eq.

(16), we get

b= l, (t——TTR_'r)
G2

e

(41)
Substituting Eqgs. (40), (41) to Egs. (15), (16), we get

a=-Rr +L2R“‘T(z ~T7Rr)

(42)
b=L{t—TTR“r+LTTR“T(t—TTR“r)} @3)
2 2
O-e O-E
Repeating this similarly, we get
a= —R“‘r+—171r'TQ ~TTRr)
o
. (44)
+—RTTTRVT(-T"R'r)
6?
t-T"R7'r
b=——{ +TRITl-T"Rr)
o, o’
s TR TR ) 49
e

Egs. (42), (43) have exira terms attached to Egs.
(40), (41). Also Eqgs. (44), (45) to Egs. (42), (43).
From Eq. (14), we get

R -T - Pll P12
P=| + 5.0 = (46)
-7 oI P, P,
where
4 4 2 Tt [Lopn T 1
P,=R'+R T[O'el—T R T}T R
=R'+RT
1 af 1 ' “
— N —7"R7'T | TTR!
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P, =Rl 21 -TTROT]

oo ! 48)
et L (
= R TWEW E [W?T R TJ

O, =0\ O
Py =21 -TTROT] TR

T gl | T gyl
w»mzz[a —T'R T}I‘ R

(49)

e n=0
Py = L’ezI_TTR‘ITF

L3 e o

Ge n=0| O

Using these equations, we get

a=-R" r+ _ITQ TR”r)
- C2Y)
Z[—-I—-Q-TTR”‘T} -17r)
n=0y Ve
t-T'R'r
b=-—17 +J;TTR"‘T (52)
o, | o,
.i(-iz-rf‘k“‘:rJ (-T"R"r)
w=0| O,

Excluding Zi(*) in Eqs. (51), (52), they become
same with Eqgs. (40), (41).

- Takashi Amemiya -
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And it is pointed out that

+ When n =0, Eqgs. (51), (52) are equal to Egs. (42),
(43), respectively

« When n=1, Egs. (51), (52) are equal to Egs. (44),
(45), respectively

Iterating the estimation of bootstrap type as of Eqs
(40)-(45), finally we get Egs. (51), (52).

As P is a positive definite matrix, Eq. (14) has a
unique solution,

As is stated above, the algorithm of bootstrap type of

Eqs. (40)-(45) becomes same with Egs. (51), (52)
under infinite iteration.

As Egs. (51), (52) is equivalent to Eq. (14), the above
algorithm of bootstrap type converges to the solution of
Eq. (14).
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