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Abstract. In this study, we consider infinite supply of raw materials and backlogged demands as given two
boundary conditions. And we need not make any specific assumptions about the inter-arrival of external demand
and service time distributions. We propose a numeric model and an algorithm in order to compute the first two
moments of inter-departure process. Entropy enables us to examine the convergence of this process and to
derive measurable relations of this process. Also, lower bound on the variance of inter-departure process plays
an important role in proving the existence and uniqueness of an optimal solution for a numeric model and
deriving the convergence order of augmented Lagrange multipliers method applied to a numeric model. Through
these works, we confirm some structural properties and numeric examples show the validity and applicability of

our study.
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1. INTRODUCTION
1.1 Motivation

Material planning and control schemes can be
classified as push, pull or hybrid systems. Push systems
are typically associated with material requirements
planning (MRP) systems. Pull systems are also called
kanban (card) control systems. The distinction between
push and pull systems is made on the basis of how
production orders are released to stages. In a push system,
the amount and time of material flow at each stages are
forecasted in advance. Based on this forecast value,
materials are pushed from a downstream stage to an
upstream stage. In a pull system, the succeeding stage
orders and withdrawls materials from the preceding stage,
only at the rate and at the time it has consumed the items.

In recent years, several variants of push and pull
schemes have been proposed, which combine features of
either different push systems, or different pull systems, or
both. So they are referred to as hybrid systems such as
CONWIP and POLCA systems. The CONWIP control
system was initially presented as an alternative pull
control strategy (Spearman et al., 1992). The basic idea

behind CONWIP is to maintain a constant amount of WIP
inventory in the entire manufacturing line by releasing
new jobs to the front of the line only when WIP at the end
of the line is used to satisfy customer demand, POLCA
{paired-cell overlapping loops of cards with authorization)
strategy is described in (Suri, 1998). In POLCA, the card
loops encompass pairs of cells(stages), a compromise
between the small loops of the kanban strategy and long
loops of the CONWIP strategy.

In the last two decades, there has been considerable
interest in the study and analysis of the pull systems. The
majority of pull researches treats the analysis problem.
Researches dealing with both performance analysis problems
and derivation of structural properties belong to this
direction. They investigate important steady state perfor-
mance measures such as throughput, average WIP and
average flow time under the ergodicity.

The models used include analytical approaches as
well as simulation approaches. Analytical solutions exist
almost exclusively for the pull serial lines with deterministic
or exponentially distributed times(see e.g. Bardinelli,
1992; Bitran et al., 1987; Buzacott, 1989; Deleersnyder ez
al., 1989; Kim, 1985; Mitra er al., 1990, 1991; So et al.,
1988; Spearman, 1992 and Tayur, 1993). On the other
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hand, more complex systems are investigated by simulation
(see e.g. Aytug et al., 1998; Hum et al., 1988; Blair et al.,
1991; Huang et al., 1983; Sarker ef al., 1988, 1989, and
Philipoom et al., 1987). However, simulation by itself can
not solve any optimization problem.

The successful implementation of pull systems as
well as analytical studies done on serial lines have led to
the belief that the performance of pull systems and its
variations are generally superior (Spearman et al., 1992;
Muckstadt et al., 1995a, 1995b). And the superior perfor-
mance of pull systems extends to more general environ-
ments. Clearly there is still a need for the development of
quantitative models to gain insight in the mechanics of a
card controlled pull system. Useful models for serial pull
systems are provided by the finite-buffer literature for
tandem queues (see e.g. Gershwin, 1987; Suresh et af.,
1990 and Whitt, 1984).

Although the results of many theories and applica-
tions are very promising, this author have strong reasons
to believe that this might not be so. They have adopted the
strong assumption such as the infinite supply of raw
material and the infinite external demand process. An
ideal pull system should have no backiogged demand.
However, due to different variations and uncertainties in
processing times, demand and availability of machines (or
mans) in the production process, it is only possible when
there is a sufficiently large amount of inventory in each
station. From these motives, we have been interested in
the implications and effects of boundary conditions.

Thus, the validity and applicability of these findings
have been fully re-examined in terms of the implication
and the effect of these strong assumptions. To date little
work has been done on the analytical approach to these
problems.

1.2 Decision Problems

Form these motives, three major problems in the pull
serial lines can be identified :

(1) What is the effect of infinite supply of raw material on
the first two moments of inter-departure process in the
steady state? With respect to this problem, the promising
findings described in Tayur(1993, corollary 1, corollary
2 and remark) may be re-examined : True or not?

(2) What is the implication of the assumption combined
infinite supply of raw material with infinite or back-
logged external demand process?

(3) If distribution free, what notions should be required?

(4) What theories should be followed to solve the above
two questions? With respect to this problem, it may be
proved to be true that the optimal solution for the
arrival rates to each cell is unique, which is the
conjecture described in (Mitra ef al., 1990).

These issues are addressed in this paper. In particular,
convergence of the inter-departure process and measure-
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ment of its the first two moments are required to answer to

the problem (3). The theories and algorithm proposed in

this study may be ultimately applied to the following
topics

(1) It may be proved that there exists the VPP(variability
propagation principle) described in Suresh et al. (1990)
in any pull serial line under general environments.

(2) The Bull-whip effect in SCM (supply chain manage-~
ment) may be quantified.

(3) Any steady state performances including distributions
may be easily computed, since they functionally relate
to the first two moments of the inter-departure process.

(4) Optimal arrangement of cells(stages) in the pull serial
line and

(5) An equivalent push type serial line in view of the
inter-departure process may be obtained.

2. CONVERGENCE OF INTER-DEPARTURE
PROCESS

2.1 Model Formulation Of The Pull Serial Line

Henceforth, the “pull” in this paper is meant for the
pure (traditional) card (kanban) control. Although there
are several ways of achieving a pull type control systems,
actual physical implementation of a pull control is most
often achieved by means of a card (kanban) system. As a
result, the terms “kanban (card)” and “pull” are used
without distinction.

Pull systems may be either constant order quantity,
non-constant withdrawl cycle or constant withdrawl cycle,
non-constant order quantity. In particular, the latter is also
called a periodic pull system. In this paper, the former is
adopted. Although the order quantity is fixed, the period
between “pulls” varies due to the randomness of manual
or machine processing time and external demand process.

In detail a series of cell may be represented as Figure
1, which is the same as shown in (Kimura et a/., 1981 and
Schonberger, 1982). In Figure 1, w-card post is unnecessary
since the existence of information sensing and material
handling capabilities are taken for granted (Mitra et al.,
1990). As a result, descriptions of implementations is
identical to Mitra ef al. (1990), Tayur (1993).

Cell (i) owns a finite number of cards which are
collected in the p-card post. If there is at lease one card in
that post, and if there is at least one full container in the
outbound of cell (i-1), then one of these containers is
moved to cell (i). Here, that container is ties with one card
from the p-card post of cell (i). Now the pair(container,
card of cell (1)) enters the buffer(inbound). In the case the
server 1s busy, the pair has to wait : otherwise processing
is started. After processing the pair proceeds to the
outbound where it the p-card post of the succeeding cell
(1+1). Then the pair{container, card of cell (i)) is separated,



Convergence and Measurement of Inter-Departure Processes 1n a Pull Serial Line: 31

material flow ——
information tiow ~~~¥

® CELL (1) ®
A TR ©%5 I EEEETIEEY
1) @we) ® " ‘

CELL (1) CELL (i+1)

0. 0T} - @ [P0} O ’o_IQ;
'C:) M z :@ M 2 @ M J ‘
@LI 1747 @ |-4 (wp) & 1 ‘7 :

®

H
CELL (m) J®—;
Ry O e
S roter ORI
Y -y -
23 e o g e o tdatrl ol
(7)) matersal arenval to outbound N, [

[ I mbound , M man or machine , O outbound , PP p-card post , WP w-card post ]

Figure 1. Flow of cards and materials(containers) in a
pull serial line

the card of cell (i) is retuned to its p-card post and the
container is moved to cell (i+1).

In this paper, the pull production line consists of a
series of cell, which is composed of a manufacturing node
(inbound + man or machine), a bulletin board (p-card post)
and outbound. A manufacturing node and a bulletin board
can be described as the queueing model. Thus each cell in
the pull serial line consists of queue & outbound.

Items flow through the cells in sequence and one
operation is performed in each cell which consists of one
machine or one server. The lot size and the batch size is 1
and there is only 1 type of item produced in each cell.
External demand arrives in a single unit. The service time
in each cell and the inter-arrival time of external demand
are assumed to be i.i.d and their means and variances are
known (distribution free, general distribution).

In addition to, there is no transit time for the move-
ment of items between cells; no scrap or defectives are
produced, and there is no down time.

There is an infinite supply of raw materials to the cell
(1) and the external demand is permitted to be infinite or
backlogged. Finally, there is a finite buffer size in each
cell, which is said to be a maximum inventory level or a
fixed number of cards.

2.2 Nomenclature
(NI)ie[o,m]-
cell index, and note that 0 denotes raw material pool.

(N2)T;,i#0"
maximum of inventory levels or number of cards in
cell (i).

(N3) K, ={k|k21+ iT} , K(,)={k|k21+iTa}

a=1+l a=i

(N4) Ck keK,--
time at which the withdrawl order for the k_th
material arrives at the outbound of cell (i).

(N5) DF ke K, -
time at which the k_th material arrives at the outbound
of cell (i).

(N6)ZF ke K,
time at which the k _th material departs from the
outbound of cell (i), in other words, the k_th material
arrives at the the queue of cell (i+1).

(N7)Sf,i#0,ke K,

processing(service) time of the k_th material at the
queue of cell (i).

(N8) A(k ), ke K, -

time at which the k_th external demand arrives at the
outbund of cell (m).

(N9){Ick =Ck* - Ck kek, |-

increments process of Ck,kek,, and note that m
indicates the inter-arrivals (increments) process of
external demands denoted by IA(k ), ke K, .

(N10){IDt =D¥! - D} ke K, }
increments process of D} keK;.
(N11) {1zl =z -z} kek, |-

increments process of Z { ke K;, which denotes the
inter-departutre process of cell (i).

(NI2)Uf =Sk -1z}, i#0,ke K,

(N13) W, =Max(DF" -z, ,0), i%0,keK,;,
waiting time of the k_th material in the queue of cell (i).

(N14) 1F =Max(2}% -D¥ 0 )i#0,ke K, -
virtual idle time of man or machine in cell (i).

0,if Ck>2DF & zF =k
(N15){1,ifCf<Df &z} =D}
ke K,

(N16) £} =P(r¥ =0)=P(zk =} ) ke,
(NI7)N,=M, +B,

M, i#0 -
number of materials being or being served in the



32 Sang-Woong Choe

queue of cell (i) in the steady state.

B, ,i#0 -

number of materials not immediately satisfied when a
withdrawal order from cell (it+1) arrives at the
outbound of cell (i) in the steady state.

0;,i#0 -
number of materials in the outbound of cell (i) in the
steady state.

(NI8) A, (#0 ) - external demand rate.

U; (#0 ),i#0 - service rate at cell (i).

: _V(IZ;) 10 mal
Casi %E(IZ,)]Z ,ze[ ,m+ ]

Cly = V(IAN]
C3; =V(S, ul ,i#0
1IZFIAk), SE > 1Z, A S,

(N19)

XN20)T(i,i+1)=T, +T,, ,i#0

T(re+1)-1
(N21)A; =2, Y P(N,=n),iz0 -
n=0

effective arrival rate at cell (i).

T(1i+])
uoo=p, D P(N;=n),i#0 -
- - n=1
effective service rate at cell (i).
A .
pl = dﬂl ,l¢0"'

traffic intensity of cell (i).

2.3 Preliminaries

Let R. denote the set of nonnegative real numbers
and let Bo, the subsets of R., denote the class of bounded

Borel sets. The stochastic processes {Cf k=K,} and
{Df, ke K} defined on the probability space (R, Bo, P)
have independent increments and are generated by (1) and
(2) respectively.

ck=

14

k-T, .
Z. " iEm
{ +1 (1)

A(k) ,i=m

D,k =MaX(Z;k_1 ’Dzk_I )+S;k ,i?':(),ke K(’) (2)

It follows from (N4) and (N5) that the stochastic
processes {C*, k=K,} and {Df, k< K} are mutually inde-
pendent. Also, by equation (1), a stochastic process
{Z¢, ke K.} defined on the probability space (R:, Bo, P)
has independent increments and is generated by

P Max(z57 , DF ), izm

i+l 4

k _ k _
2! =Mas(ct . D Max(A(k), DY) L i=m

©)

1

In particular, the boundary condition of an infinite
supply of raw materials requires {Cg ke K, }E {Z(f ke K, }
Thus, we need not consider {D(ﬂ‘ ke K, }

Similarly, {Z," keK, ,i#0 } may be generated by

zk=cHliz0 (4)
, where {Cé‘ T reK 1} implies that a withdrawl order for
the (k+T;),, material arrives at the raw materials pool.

In general, the stochastic processes 1Zf,keK, |,
{Czk ke K, }and { D,k ke K, } have nonstationary incre-

ments since they can not be represented as a sum of
iid.(independent and identically distributed) random
variables, In a pull serial line, if either the p-card post of
cell (i) or the outbound of cell (i-1) is empty, then the
server remains idle until the earliest point in time until
both material and card are available. In other words, a pull
serial line is subject to blocking (back order, backlogging)
from time to time. This is the reason why the stochastic

processes {Z,k ke K, }, {Ci" ke K, }and {D," kek, }
can not be renewal processes.

Lemma 1. [f there exists a pull serial line such that there
is no down time, then we get the following two results :

)

Three sequences of integrable random variables

W, kek,, b Dk ek, fana {12k, ke k) |
defined on the probability space (R+, Bo, P) converge in

L* to some random variables Wy, ID, and IZ., respec-
tively for each i. That is,

lim E[ (Wé‘,,’ ~Woi )2 }0

)

lim E[ (¥ -mp, ¥ ]:o

h—roo

lim E[(IZ,"_I 1z, ] ]:0

k—o0
(i)
E(ID,)=E(IZ, ;)
V(ID,)=2-V(S; )+ 2-E(Wy, IE(S,) - E(1Z,_; )]
+V(IZ,_; )
®)

Proof. From the assumption that there is no down time,
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any given pull serial line must be always stable. This

implies that
k
{ (ws, J . ke k) }

is uniformly integrable and W}, converges in probability
to some random variable W, ,. That is, for every

£>0, Sup, E|: (Wéyi)z]<°° and
kli”LP(’WQ’", -Wp, ' > € )= 0

Thus, W}, converges in L to some random variable W, ,.
Using (N13) and (N14), we obtain

Wka+I - Ilk = le - Zik—jl = Utk - WQk,z
kel gk (6
Wo, "1i =0
It follows from equation (6) and (N12) that
D} =UM 1} v 1z8 =5 1} (7

Since S**! are i.i.d. random variables, it is clear that ¥
and ID¥ converges in L* to some random variables /, and
ID, respectively. Thus Ut in equation (6) converges in L’
to some random variable U,. Similarly, 1z}, in (N12)
converges L? in to some random variable 17Z,_,. Since all
of Wi, IF, ID}, U} and 1Z%, converge in 1%, as a
matter of course, they converge in L' Hence, based on (6),

(7) and Lebesque’s Dominated Convergence Theorem,
we have

E(1,)=-EU,) ®)
E(ID,)=E(S,)— E(U,)=E(IZ,_;) 9)

E(I? )-E(U}?)

E(W,,; )= 10
0, 2E(U, ) (10)
Note that $**! and 1} are mutually independent.
By equation (8),
V(ID;)=V(S,)+V(Il,) (11

which may be written as
V(ID,)=V(S,)+2-E(Wy, )-E(U, )+ V(U,)
=2-V(S;)+ 2-E(Wy, ) [E(S, )-E(1Z,_; )] (12)
+V(iIZ,_ ;)

since S*and 7z} | in (N12) are mutually independent too.
This completes the proof. [

2.4 Entropy of a Finite Scheme

The inter-departures {IZ¥, ke K ,)process may be
represented as

1z} =75 Dk~ - gk (DE —ck ek (13)

In probability theory a complete system of events
means a set of events such that one and only one of them
must occur at each trial. If we are given the events of a
complete system, together with their probabilities, then we
say that we have a finite scheme. In this viewpoint, we
consider a finite scheme of the inter-departures process
that is given by

ICik , W.p. f,’k .j-ik+1
ckHl-pk wp. (1-fF). gt
D —cF  w.p. ff (1= 12T

14

D} Jw.p. (1= fF)-(1-fFT)

QI1zF )= (14)

Every finite scheme describes a state of uncertainty.
It seems obvious that the amount of uncertainty is
different in different schemes. For many applications it
seems desirable to introduce a quantity that in a reason-
able way measures the amount of uncertainty associated
with a given finite scheme. We shall call the quantity
H, (12}) the entropy of the finite scheme @ (17/), which
represents the degree of uncertainty and difficulty in
estimation.

Proposition 1. j* ke K, are iid. random variables

and H, (1Z}) is time-invariant.

Proof. By the definition, it is obvious that J,k and J,k+l are
mutually independent for each . Let Cg,r and C Ik,r denote
the number of O’s and 1’s in the pair (7%,75 ) of an
event defined in equation (13). Then we obtain

4

Cok.r'Pr
1 ) 2
Y2p
r=1
i i
CIr'Pr
P(J!\'ZI)z oy , _ Z_fzk —f,k+1
i ] 2
Y2p
r=1
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Since f* :(fik +fik+1% and f¥ = £** for each k,

we have E(J," ): E(J,"” ) V(J,." )= V(J,."” ), which means
JE . keK,;) areiid.

Now we set f.f =71, ,Vk. fi is a given constant such that

0=<f, < 1. Then the entropy may be calculated as

4
HolizE)= -3 P.inP,
r=1

=-2:[finf, + (1= f)in(1-f;)]
And In denotes the natural logarithm. Thus H, (IZ,’“) is

time-invariant. This completes the proof. [

Under a finite scheme Q(ZZ), we may calculate Eo
(1zF) and Vo (1z}) with the conditional expectation and
variance, which are given by

Eq(IZ¥)=f,-E(IC* )+ (1~ f,)- E(ID}) (15)
Va(iz})=f7-v(Icky+(1- £/ -v(ID})

+ fx‘(I—fx)'E[(C,k“Dik)z-{- (C'k+1_D‘k+1);’:|

If there exists a new finite scheme 2. (1Z) such that
Equ(12: ) Eq (128 ) Vo, (12} Jeva (12}
and
Ho, 1z} )eH o (12"),

it is worth while for us to consider and see what will come
out of it the more because Q.+ (1Z/*) is superior to Q (1Z}).

To begin with, (13) and (14) are transformed into
(13-1) and (14-1) respectively.

Iz =af-ICF +(1-af ) IDf ,0<af <1 (13-1)

Icf  sraf =1
Q.(1ZF)y={ID} ,sr.a} =0
ak-ICk + (1-a} )-IDF | s1.0<0f <1

(14-1)

af,k is a mixed random variable with the distribution is
given by

0,wp. (I-f )

1, w.p. f,z

ak =10, 3] wp. —4-fi-(1- 1, )

(16)

'y
)}Lx,kinaik +(1-af )-In(1-af )]da,"

When o/ lies in an interval (0, 1), a distribution
function must satisfies the following conditions.

€))] fOIdF(af) =2£,(1— 1), F(a*) denotes the distribution
function.
@) Eq, (128 = Eq 12} ) Vo (12f )<V, (12} ) and
Ho 1z} )en, (12} ),
(3) Since equation (13-1) represents the stochastic convex

dF(al) dF(1-a})
do} doc}

combination,

Proposition 2. «f, ke K, are Lid random variables

and Hg , (1Z}) is time-invariant.

Proof. It is obvious that o/ and o/ are mutually

independent for each £. It follows from equation (16) that

E(alk )=fz ’V(axk)zl%gft(]-ft)

This implies that ¢, ke K, are i.i.d.
And H, , (1z}) is given by

fi(1=f, NIn2+0.087213)

This completes the proof. O

Similarly, under a finite scheme Q.(1Z/), we may
calculate Eq:(17}) and Vo.(1Z}) with the conditional
expectation and variance, which are given by

Eq.(1Zf)=f-E(ICf )+ (1~ f, )-E(ID})
Vo (128 ) =f2-viIck )+ (1- £, ) -v(IDf)

w e giot1= £, 1 fpcck vl ) 4D

+j—;-fi (1-f,)E(1C} )~ E( D} )f

Hence, by (Proposition 1, 2), (15) and (17), we have
Eq. (12t )= Ea(128) Vo, (12 Jevi (12F)
and
Ha. (12} )t o (12},

As a result, it is recommended to do use a finite scheme
Q+(IZ,’7) the more because the uncertainty of Q.( [Z,’*) is

less than that of Q (1Z}).
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A finite scheme Q.(1z}) enables us to get a very
useful lemma.

Lemma 2. [f there exists a pull serial line such that the
external demand is permitted to be backlogged, then we
get the following two main results :

M

For each |, {]C,k, ke K} and {IZ,’“’, ke K} defined on
the probability space (R+, Bo, P) converge in L’ 1o some
random variables

IC, and 1Z,=0;IC,+(1-a, )ID, ,0<0, <]

(ii)
E(IZ, )=f,-E(IC, )+ (I-f ) E(ID, )
V(IZ, )=f7-V(IC, )+ (I-f; ) -V(ID, )
+—%f‘, (1~ f, )A(V(lcl J+V(ID, )) (18)

+%-ﬁ~(1-f,~)~(E(IC, )~E(ID; )f
0< f <1

Proof. In (Lemma 1), there is no knowing whether 1Z,f
converges in L’ to some random variable IZ,, or not. In
(Lemma 2), however, by the assumption of permitting
backlogged demand, it follows from equation (1) and (N8)
that {IC:, ke K} = {IA(R), ke K(,»} .

Since IA(k) are i.i.d. random variables, it is clear that IC,!
converges in L* to some random variable ICy. Then a
finite scheme Q.(1Z}) described in equation (13-1) tells
us that if we fix / = m in equation (13-1), 1Z converges in
L* to some random variable /Z,,. In other words, note that
(Lemma 1) and (Proposition 2). Now, applying this fact,
(Lemma 1), (Proposition 2) and Continuous Mapping
Principle to a finite scheme £2+(IZ,k), then we obtain /C;*
converges in L* to some random variable IC, for each
i= [0, m—1]. Therefore,

k@;E[(ICf-—I@ i ]:0 and
Alﬁ'(i El:(lzlk ~o;IC, —(1-o, ) ID; )Z :lzo

Now that 17} converges in L” to some random variable /Z,,
it is clear that a conditional expectation also converges in
L* to some random variable and its some subsequence
converges in w.p. 1(i.c. almost everywhere, almost surely)
to some random variable. Thus equation (18) can be
directly derived from equation (17). Finally,

Elat =1, Vlek =11 - £i(1- £,) implies £, %0,

which means also ¢, 0. This completes the proof. [J

2.5 True Lower Bound of V(i1Z,)

By (N16) and (N17), f; must be equal to P(8, = 0).
However, it is possible for us to derive the distributions of
B, M, and O, only when the distribution of N, should be
given in advance.

In this paper, we need not make any specific assump-
tions about the inter-arrivals of external demands and
service time distributions. Consequently, only approxi-
mate distributions of the steady state random variables
such as B, M, O, and N, may be available. This implies
that there are many possibilities of approximating their
distributions. Therefore, it is necessary that we should
derive a true or desirable lower bound on V(/Z)) applicable
to any approximate to f; or P(B; = 0) on the basis of N..

Also this necessity forces us to modify equation
(13-1). Fortunately, there is at least one mathematical
technique to solve this problem, which is the Taylor's
Series. Maintaining an identical expectation of /Z,, we will
utilize the Taylor's Series.

Proposition 3. The lower bound on W(IZ) applicable to
any given approximate to f, or P(B, = 0) is represented as

1z, =f,-IC; +(I-f;) ID; +

(ecic, )-E(D, )} (0, f,)
E(1Z,)=f,-E(IC, )+ (1~ f,)-E(ID, )
V(IZ, )=f-V(IC, )+ (I1-f, )} -V(ID, )

(19)

+%-f,-(1—f, )-(Ec1C, )-E(ID, )f

Proof. From equation (13-1), the lower bound may be
obtained by the first order Taylor's Series at the
neighborhood of

ek 1ck D} )=(EC ok ), BC1CE ), (1D} )
without remainder. Then we have
1zk =5.1Cc* +(1-f,)-ID} +
(ec 1c} - E(1D} ) (k- £,)

E(IZ} )=f -E(ICF )+ (1-f ) E(ID})
VIzk)=f2-viIck )+ (1-f, P -v(ip})

(13-2)

11
+Efl (I—f[ )(E(]C’k )_E([D’k ))2
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By (Lemma 1), (Lemma 2} and (Proposition 2), equation
{19) can be derived from equation (13-2) in the steady
state. This completes the proof. []

Actually, it is impossible to overestimate the impor-
tance of the lower bound on ¥{IZ)). A concise functional
form compared to the true value of V(IZ) enables us to
casily manipulate problems associated with proofs and
structural properties. It is not too much to say that we
cannot pay too much attention to this fact.

2.6 First Two Moments of under Given Two
Boundary Conditions

In this section, we explicitly consider two boundary
conditions that infinite supply of raw materials and
backlogged demands are permitted to cell (1) and cell (m)
respectively. Therefore, what is the implication of these
conditions? We propose the equivalent statement to these
assumptions. Then, relied upon these assumptions, we are
with intention of investigating into measurable relations
among ID,, IZ, and IC, representative of cell (i-1), cell (i)
and cell (i+1) respectively.

Theorem 1. Suppose that there exists a pull serial line
such that infinite supply of raw materials and backlogged
demands are permitted, besides E(U) < 0. Then we have
the following results :

M
E(IZ,,, )= E( IZO}=%d e [0, m] (20.1)
(i)
VIZ, hgpp =7 -VOIC, )+ (1= £, ) -V(ID, )

20-2
+%-f,.(1—ﬂ)-(vuq evim, ) 0P

(ii1)

V(IZ, Jower =f2 -V(IC, )+ (I-f, )*-V(ID, )(20-3)
Proof. In this proof, {Lemma 1) and (Lemma 2) are
implicitly used.

It follows from equation (1) or (4) that [Zy=ICy= IZ,.
Hence,

E(1Z,)=E(1Z, )
And by (4), (5) and (18}, we obtain
H-E(IZ,,)—E(IZ; )+ (I-f, ))E(IZ_;) =0

which may be rewritten as
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E(1Z,+\) = E(IZ)) + [EUZ,) — E(IZ_)]. S(3),

L 20
Si= 3 1](1— —1), i< 0, m]
7=0 £=0 fk

Infinite supply of raw materials implies fo = 1. Thus, from
equation [21], we have

siy=3 T (1—-1)-—-0

=0 =0\ fe
In addition,

E(IZ,,,)=EKIC, )= E(IA):%d

This completes the proof of (20-1).

it follows from (4), (5) and (20-1) that E(IC) = E(ID)).
Applying this relation to (18) and (19), then we complete
the proof of (20-2) and (20-3). (]

Proposition 3. Suppose E(U) < 0. Then the following
two statements are equivalent.

®
The infinite supply of raw materials and the backlogged
demands are permitted.

(i)
Either backlogged demands or infinite demands are
permitted, and

P(N,=T(i,i+1))=0,P(N,=0)=1-p,,p,<1,Vie[l,m]

Proof. (1) (i) implies (ii).
By equation (20-1) and (N21), we have

E(1Z, )=y [1-P(N, =T(ii+ 1))
=(u,-[1-P(N, =0)])"
:%d N iE{O,m+I]

(2) (i1) implies (1).
By (N21) and equation (9), we have

A=y =/E(1D,)=%?(IZ,~*1).

Since p, <1,

_ — - - 1 :
%E(IZ”H.])_ Ay =4 —/E‘(IZH)’IG [I,m]

Thus, we obtain either

%5( 1Z,)~ 7E{ 1z, )

or
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%5( 1z,)" %5( m,)~ /E( 1z, ;)

This completes the proof. []

3. MEASUREMENT OF INTER-DEPARTURE
PROCESS

3.1 Numeric model

Henceforth, we would like to focus on the squared
coefticient of variation of the inter-departure process. To
begin with, we present the (Corollary 1).

Corollary 1. Suppose that there exists a pull serial line
such that infinite supply of raw materials and backlogged
demands are permitted, besides E(U,) < (. Then we have
the following results :

Cim =Chy (22)

Ciiwy =M(i)CJ . —N(i)Cl —2-A -N(i)-$S(i)
CZ

SS(i) =L +E(W,,)- R
U A

Ci,z =Ci,/

ieﬂ,m] for any teb m+1]

1

2
LJ , under lower bound

‘ f,
M(i)= ( 23

18 (23)
7-f2+11-f,

s

, under true value

fi
7-f7-25-f,+18
7-fE411-f,

2
(i} , under lower bound
N(i)= (24)

, under true value

Proof. We replace V(ID,) in (20-2) and (20-3) with (12).
And then, by (N19) and (20-1), the proof is completed. [

Indeed, there is no computing f., E(Wp.) in (22), (23)
and (24) if not given C 2A,, beforehand. In this sense, C ZA,, is
the key factor that enables us to analyze the interaction
between every three adjacent cells.

A way of solving a set of simultaneous algebraic
equations such as the Table 1 is to form an objective
function and minimize it numerically.

There never exists a unique optimal solution in case
of a lower bound without existing it in case of a true

value, since structural properties hold due to the similar-
ities of functional form such as (23) and (24).

In particular, functional form of lower bound is more
concise than that of true value. Thus, we can use the case
of lower bound in order to prove the existence, the
uniqueness and the necessary and sufficient conditions of
an optimal solution.

Table 1. Nonlinear simultaneous equations

FIND : C3,20 ,hell,m+2],icltm] (25

2 _ 2
Came2=Chu

2 2
1Y . (i-£,
C/21,1+2 =(7] C,Z,H—I _[Tf} C:z -

2 2
- Y[cs, 11
225 L | {22 E(W,, ) ‘——]
d( i }{le e (,”x Aqg (26)

E(M, I
E(W,, )= (/1 ,)_,u
d !

_ta

1 /_ll

T,
E(M,)=Y x-P(M,=x)

x=0

T,
f,=1—p,+cB_,.ZP(Nl:n)

n=1

T{ia+1 )1 -1
CB,Iz{pl. ZP(NI=H)]

n=1 (27)
Tm+1=bigM
I-p,,x=0
Cpy P(N,=x), xe[l,T,~1]
P(M,=x)=
T(ea+1)-1
Cp,- X P(N,=n),x=T,
n=T,
(I-p, )6, ,n=0

P(N,=n)={p,(1-r)r"".6,  nell,T(ii+1)-1]
p(1=p )rF s n=T(ii+1)

_(_ 2 TOsrn1 Y
5,—(1 P, J (28)
)
E(L)

0.5-pf (C3, +1NPICs,+Chi)

E(L )= i
(1_pl )(pl CS,1+I)
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3.2 Existence and Uniqueness of Optimal
Solution

We define A and C 2,{, as
Ci.i = kt(cle,] ) »
Car=ki(Ch)=ky(Ch;), 2
A= {cj,,}cj‘,‘ =k(Ci,)20,Viell,m+2 ]} )
cH' =[0,)
Table 1 may be transformed into (30) and (30) is the

same as (31).

FIND :C3,e Ac H' =[0, )

kma2(CR1) = Chy =0 (30)
where szx,m+2 = km+2(Cft,l)
Minimize : @(C}, )= 0.5 [km( Cis)=Chy f
Subject to : C2,e ACH' =0, o) (1)

.2 = 2
where : CA,m+2 = km+2(CA,I)

Theorem 2. @(C3 ) are A given by equation (31).
Suppose

() @: H' — H' is a continuous Junction.

(2) A is a compact set.

And we define

(@) v =inf %I)(Cf“ ).Ci, e A} (b) ¢((C§,Iy )20

Then there is an optimal solution (C3))"in A that
minimizes @(.) over A. And the optimal solution (C},)
is uynique.

Proof. (1) Existence :

By the definition of v (infimum), there exists a sequence
{C5.1.4} such that

lim @c2,, )=vin A

K 000
Thus there exists a set K such that
2 2 . .
Caix = (CAJ)k € AkekK C{posmve int eger}

due to the compactness of A.
Continuity @ (.) of implies

/\llg;\ O Cf&,l,k ) :@((Cfu)* )

Andas K {positive int eger},
lim ¢(C,i,1,k ) _ lim ®(cj’]_k ).

kek T k—oo

Hence,

@((Ci,lr ): lim ®(C3,; ) = lim DCL,)=v.
kek k—rc0 v

From the definition of v (infimumy},

®(Cl, )2y =<1>((cf,,1)' ) VC,eA.

Consequently, there exists an optimal solution (Cj 1)*

that minimizes @ (.) over A.

{(2) Uniqueness :

[f we assume that equation (31} is multimodal,
Q, Qi and Q>may be defined as

Q=fo|®d(0)<d(C2,)VCE eA}
|2|22

c (32)
Ql ={(01},.QZ =Q§ ,}Q2|21
Q,,.2,cQcA
By this definition,
D(w, ) SD(C2,) A D(w, ) SD(CL,),
V(Cj,, €EA,m, € .Qz)
Thus,
Do, )=P(w, ). 0, #w, Vo, 2, (33)

(31) and (33) imply,
ka2 (@7 ) = kpip(0; ), 0, # 0, , VO, € Q, (34)

It follows from Table 1 that for any &1, &2, equation (36)
must be satisfied in order for equation (35) to have a
meaning.

kr-‘rZ(E] ) = ki-@-z(gz}y v&"] B 32 e A (35)

(kl+l(€1 )=k (& ))‘“‘(k:(gl )=k(¢&, ))

@81:-82,V(g;,ezeA,iE[I"’l]) (36)

Hence, by equation (36), equation (38) must be satisfied in
order that equation (37) may be significant.

Kpio(@; ) =kyr(0; ), Vo, € 2, 37
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This contradicts equation (34). Therefore, the assumption
that equation (31) is multimodal is rejected. This
completes the proof. [

A set A is said to be compact if any sequence(or
subsequence) contains a convergent subsequence whose
limit is in A. In Euclidean spaces it can be shown that
compact sets correspond to closed and bounded sets. Thus
a compact set must contain all of its edges and cannot be
extended to infinity in any direction. The points generated
by most algorithms can be contained in such sets. If there
exists /1, it is required to establish an algorithm to be
capable of finding a compact set /1 and an optimal
solution to equation (31).

3.3 Augmented Lagrange Multiplier Approach

The constrained minimization problem such as
equation (31) can be solved by solving a sequence of
unconstrained problems, that in effect, by providing some
penalty to limit constraint violations. Because the way in
which this penalty is imposed often leads to a numerically
ill-conditioned problem, a method is devised whereby
only a moderate penalty is provided in the initial stages,
and this penalty is increased as the optimization progresses.

This requires the solution of several unconstrained
minimization problems in obtaining the optimum
constrained design ; thus the term Sequential Unconstrained
Minimization Techniques or SUMT to identify these
methods.

The numerical ill-conditioning often encountered in
the SUMT can be substantially reduced by incorporating
the Lagrange multipliers into the optimization strategy.
The most common method is known as the augmented
Lagrange multiplier( ALM) method.

Indeed, Powell (1979) notes that the use of SUMT
which do not include the Lagrange multipliers is obsolete
as a practical optimization tool. The ALM method has
been studied exhaustively by numerous authors. (see e.g.
Imai et al., 1981; Gross et al., 1985; Pierre et al., 1975;
Rockafellar, 1973).

The first step is to convert equation (31) to an
equivalent equality-constrained problem by adding slack
variables to the constraints and then, these slack variables
can be eliminated in the augmented Lagrange function.

Equation (31) is equivalent to

e 1
Minimize. : tD(C/i, )= 5-[km+2(C§_1 ) - CLZ)M]Z

(39
subject to : k,(Cfu )20, iell, m+2]
AL function to equation (39) is given by
AL(Ci 1, A, )= (40)

39

m+2

D(CH ) - Y, {A’i -Min liki(c/zi,l )ZL} ]

i=] rp

2
1.
m+2 . 2 i
$ Min|k(C3 ;) ——
T [ ml:l( A‘I)Z'rP:H
1=1
=L(Ch, Ary )+ 1y P(Ch AT, )

In equation (40),

is a Lagrange multiplier vector. If an optimal Lagrange
multiplier vector

is known, then

. . 2 "
Min®(C3, )= Min.L(Ch, X .r,)
CyieA Cy,en

41
= Min, AL(C5, ¥ 7, “h

ol eH!

The foregoing observations suggest that, by updating
the Lagrange multipliers so that they approach the optimal
values, convergence may occur without the need for
penalty parameter to be very large. Thus the ill-conditioning
associated with penalty parameter can be avoided.

The update formula for the Lagrange multiplier
vector may be suggested by

A (42)
Ay =4 —-2‘rM -Min[K(Cf“ ),-2——‘—;5———}

pb
A =0

. , 2
= 2’1,&4—/ =A’1,L _Z'r,nk “Min kl(cli.l}‘ )’_}\_
2-r“

And given constants ¢; and ¢; a penalty parameter is
generated by

. Cy
€1 ok ’lfrp.k ﬁz_—
]
Tpa+r = (43)
. o Cy
cy L ifrpp >
<
And
c;>1,¢05 =
! an!rn.kl

Theorem 3. The Lagrange multipliers are updated by
equation (42) and equation (43) generates the penalty



40

parameter. An algorithm of minimizing the unconstrained
subproblem is given. Suppose a set /A is compact. then
there exists a convergent subsequence {C} 4 ks K)
whose limit (C5,)" is in A and is an optimal solution
(C3.1)". In other words, the limit point (C 207
Kuhn-Tucker point.

is a

Proof. First, Kronecker delta function is defined as

A
I, if k(C3,)-—2 <0

Z.rp,k

6i,k =

0 , otherwise

And we use the following notations.

. + + 9+ +
[Imlk=l =(1,2, ...... y m+27‘,

kEK

lim C? ——(C2 ) Jiimr,, =r" and
keK ALk Al keK pk p

lim 6, , =6

kek Lk !

(M (Cir)" =4
Continuity of @(.), AL(.) and L(.) implies
i 2 — 2
ppui? D(Chpp ) =D (CA,I )' )
. +
kl’e"}( LCR1k P Tp) =L((C,2“) ATy )

‘ kﬁé’}(AL(Ci,z,k Ak Tp ) =AL((C,2“)‘ AT )

And
oclc2,) ) =ruled,) a2t
(44)
—arclez, ) a4 et

By (41) and (44), we have

lim ok P(Chik s A rps ) (45)

ke K
= lim AL(Cj,I,k s Tpy )= lim L(szu,k sk ok )

ke K ke K

- AL((C,ZUY A r*}- L((Ci‘,y A r;) =0

. 2
Since rp'kw > rl,yk >0, ‘P(CA,I,k ’A’k ,rp’k )ZO,VkEK’

equation (46) must be satisfied in order for equation (45)
to have a meaning.

lim P(CiJ,k ,lk s Tp ke )=0
ke K

(46)
Since P(.) is continuous,

lim P(CRup Ay 1oy )=PUCE, )27 01" )=0
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Thus, (C3,)" =4
@ (Ci1)" =(Ciy)
C}i 14 is a value such that

AL(CZ i A o700 )= Min, AL(CL 1 2 70k ) (47)

Cy,eH

Thus,

AL(CR o hi oy )= LOCR Ay Ty )

-+ rp.k 'P(Cﬁ,l,k ,A«k ,rp’k )

< AL((Ci,I).,/lk,rp,k):L((Cf\,l)"/lk’rp.k)

(48)

And Tousr 2Tpx >0, P(CRyp Ay 7y )20,V kEK
Hence, it follows that

L( Cf\,l,k o Tox ) S L (Ci,zj A ok ) @9
Continuity of L(.) and equation (49) imply

lim UChs 2=t () H

kek

< L((Cf_z) AT ’J)

Afterall, (C3,)" e Ameans (C3,)" =(C3,)"

(50

(3) (C3.))" is a Kuhn-Tucker point.

Since li'k 20, l:f 20 Vik,
there is two possibilities :

NN
® A =04 ki((ci,l)+]> 0

Hence,

Aj.k,((cf,_,)*% 0, k,‘((cj,)*)z 0,V i

Using Kronecker delta function, it follows from (42) that

A
lim Min,[k,(cji,k ), =k ]
kek E A

/ll,k

2 Tk }

= [im
kek

TACCHES
P
A

=5 ‘k,((c,i,,)* )+(1—5,+ )

(5,,/( ‘k,(Cfx,l,k JH(1=6,, )
b

p
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and

2-r,,,,(

E[A: -5 [)L —2er -k,[(Ci.IT)]) (52)

- + _ /’L;+ ( 2 ) /‘LT
=|6" = k| \Ca, D
17—z.r;.k,((ci.,7] ei.] ey

X
Equations (51) and (40) imply that
VAL((Cj,,y A ):V@((Cj,,y)
—mz”[a,.* 87 -Vk,((cj,,)*ﬂ
=
57 ~kl((cj,,)+ )-f—
+2-r

p'z At
1=1 (1_5,+).5l+.2 i

. A
{517[\1 [’lr,kw =y =21 ~Min.[k,(C§,,,k ) ]]

(53)

m+2

&
I
Rl

'U‘.;.

By (52) and (53),
VAL((cg,,)* AT j:vqs((cg,,)*)

—g{[lf-Z-rJ 'k:((ci,zy)}-5?~Vk,((ci,z)’j} (54)
vl ) |5 v ) o

1=l

Since V4,

Ao, A 'k,((ci.ly)= 0 and ki((Ci,IYJ 20,
equation (54) implies
Vi,

V@((cj_,T )-"iz |:)L;“ ~Vk,((Cf,_,y ﬂso ,

=]

20,0 .k,((cj',)')=o and k,((cﬁ_,f)zo.

Thus, these are Kuhn-Tucker conditions for (31) or (39).
Consequently, (C3 ) " is a Kuhn-Tucker point. This com-
pletes the proof. [

Through this proof, we have

{’e"z =2 =1, {(’e’z\’ Ciik :(Ci.1)+ = (C§,1)

Convergence condition of subsequence {C3 | ,, ke K} is
lim AL(CF 14, g Ty )= AL[(Cj,)' ATt J =0

(C3 1.4 k= K} is determined by the process to solve the
unconstrained minimization subproblem. Equation (40) has a
discontinuous second derivative at £,(Cj )= 4, [27,.
Thus second order techniques should be used with caution
for solving the unconstrained minimization subproblem. In
this paper, we will use only the augmented Lagrange
function value and its gradient in order to solve sub-
problems. The gradient may be computed by the numeric
method that is said to be the second order midpoint
difference formula given by

VAL(C}, . A.ry)

_AL(CR +AAr, ) =ALCh ~AAr, )

,A>0
2A

3.4 Algorithm to Minimize the Unconstrained
Subproblem

Let C3 4, be the ny of Cj ., value in the process
of minimizing equation (55).
Chlan i AL(CRyx o Hy ok )
= Min AL(CI1 Aore) (55)

cl,eH!
L k,n20

In the subsequence {C% | 4 . n& Nk}, suppose that
the point C§ | 4,4+, lies in a given direction d, from the

point C3 , , ,- Then we get
VAL(CE P oTpp ) din 20,021, Vk
If we define

AL C? At
;= LUChriemet » M Tox ) w20V k

" AL( C/Zx,l,k,n s ok )

then z, means the ratio of the augmented Lagrange func-
tion value in the process of solving the ky unconstrained
minimization subproblem.

If compact set A exists, the augmented Lagrange
function and its first derivative can be expanded into a
Taylor series by the (Theorem 2).

Theorem 4. For some constants (0<r, c3<1,t, is

given by equation (56). Then the algorithm to generate the
subsequence {C/ZLI, ks WE Ny} by the equation (57) has
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the order of convergence 1.

=" v, ,n20, Yk

(56)

21=1, JAL(CE 1n Ay T )
VAL(C yym A Ty )

(57

2 2
Chrkme1=Cltrn —

Proof. It is obvious that

AL(CH ypet g Tpp ) = AL(CE i A 7ok )

VAL{Ci;&n ’A‘k ,rp’k )‘dk,n 'Sk,n
2

(38)

n

And we set

St

SR

2'[AL(C/2\,I,k,n+1 g Tox )= ALCE ypn Ay 0T )] (59)
VAL(C::,I,I(,H "lk ¥ p k )'dk,n

By (58) and (59), we obtain

2 2
Catin1=Carin +

2[AL( Catpnts M Tpa )= AUCE 11w H Ty )]
VAL C 1P ok )

limzt, =c;
nEN,

From (56),

For sufficiently large number, AL function value is
decreased geometrically. That is,

AL(CE pyn orpi )= Al L A>0, Y k
Order of convergence is described as

log AL(C 1y st » M 5 Tpp)

im ;
neENy logAL{ CA,I.;C,?? ’z‘k s rp,k )
- lim log A+{n+1)logcs =7
ney,  logA+nloges

This completes the proof. (]

In the subsequence {Cj, i, n< Ny}, necessary
and sufficient condition for convergence is

lim AL(Cyppp A > Tpa )=ALC, 0 A 1y ) =0

neN;

The remainder of work is two : one is to confirm the
existence of a compact set and the other is to estimate an
initial value Cj ;. The necessary and sufficient condi-
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tion for the existence of a compact set / is that there
exists 0 </<u < o such that

VAL(L, Ay, 1p0 ) S0, VAL(u , Ry, 1,5 )20 (60)

Finally, the initial value C3,,, can be estimated

with the method of Cubic Interpolation that has the order
of convergence 2.

4. NUMERIC EXAMPLES

The nonlinear simultaneous equations proposed as
Table 1 may be converted into a constrained optimization
problem. Also it can be proved that this constrained
optimization problem is unimodal, which means that there
exists a unique optimal solution. In addition, we can
model this problem with the augmented Lagrange
multipliers and prove that the algorithm used to solve this
problem has the convergence order of 1. All proofs
associated with these issues has been already presented in
section 3 in detail. In this section, we consider five toy
problems as examples in order to show the validity and
applicability of the proposed theories and algorithm. And
codes implementing a proposed algorithm are compiled
with the Borland C++ (Version 3.0 or 3.1).

To begin with, we set

Ay =1,V(IA)=V(S,)=02?
T,=(i) mod 2 + I, ,bigM =20,m=235.

and consider

[PI] y=(19,19,15151.1)
[P2] u=(11151519,19)
[P3] u=(1.9,1511,5,19)
[P4] u=(15,19,19,1.5,1.1)
[P5] u=(11,519,19,15)

The results to be reported on the experiments
performed with our study can be divided into the following
two groups:

(1) computing the squared coefficients of variation of
inter-departure process under the lower bound of
VIZ).

(2) if (1) is successfully performed, quantifying some
issues associated with distribution including (C}’L,)*
under the true value of F{IZ).

4.1 (cf,,,)* viell,m+2] under V(IZ, ), pwer

Results of experiments are given by Table 2.
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Table 2. (C% )" under lower bound

Table 5. (C3 )" under true value

(C3)7| PO | (P2 | [P3] | P4 | [PS] (i) | [P | [P2] | [P3] | [P4] | [PS]
1| 0.0310 | 0.0349 | 0.0336 | 0.0310 | 0.0348 I ] 00409 | 0.0415 | 0.0421 | 0.0409 | 0.0415
2 0.0409 | 0.0415 | 0.0421 | 0.0409 | 0.0415
2 0.0310 | 0.0349 | 0.0336 | 0.0310 | 0.0348
3 0.0409 | 0.0415 | 0.0421 | 0.0409 | 0.0415
3] 0.0310 | 0.0349 | 0.0336 | 0.0310 | 0.0348 4 | 0.0405 | 0.0405 | 0.0410 | 0.0405 | 0.0404
4 0.0323 | 0.0381 | 0.0365 | 0.0323 | 0.0380 5 0.0405 | 0.0405 | 0.0410 | 0.0405 | 0.0404
5 0.0323 | 0.0381 | 0.0365 | 0.0323 | 0.0380 6 0.0394 | 0.0400 | 0.0400 | 0.0394 | 0.0400
6 0.0350 | 0.0389 | 0.0399 | 0.0350 | 0.0397 7 0.0400 | 0.0400 | 0.0400 | 0.0400 | 0.0400
7 0.0397 | 0.0399 | 0.0399 | 0.0397 | 0.0400 | Table 6. Timein system
]
(P1] [P2] [P3] [P4] [PS]
Table 2 shows that there exists an optimal solution for
(22), (23) and (24) in all problems. Thus, further experi- Mean | 8.0000 | 8.0000 | 8.0000 | 8.0000 | 8.0000
ments are required. variance | 2.0558 | 1.9885 | 1.9360 | 2.0558 | 1.9940

42 {2, ) ielt.m+2] under V(1Z, ypys

Results of experiments are given by Table 3.

Table3. (Cj,)’

(Ce)"| [P1] [P2] [P3] [P4] (P5]
1 1.0016 | 1.0161 | 1.0017 ;| 1.0034 | 1.0161
2 1.0016 | 1.0035 | 1.0035 | 1.0016 | 1.0035
3 1.0034 | 1.0035 | 1.0162 | 1.0016 | 1.0016
(Cg )" has been defined in equation (27).
Tabled. (f,)*
) [P1] [P2] [P3] [P4] {P5]
1 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
2 0.9763 | 0.9514 | 0.9511 | 0.9763 | 0.9514
3 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
4 0.9519 , 09764 | 0.9516 | 0.9519 | 0.9764
5 0.9243 | 0.9988 | 0.9988 | 0.9243 | 0.9960

(#,)" implies the probability there is no back order in the

steady state. In particular, (#;)* in Table 4 is equal to the
probability there occurs no backlogged demands.

Note that a sequence [P3] is better than any other sequences
in terms of the variance of time in system.

Table 7. Interval in which compact set exists: Necessary
and sufficient conditions

Interval | [P1] | [P2] | [P3] | [P4] | [PS)
17 100390 | 0.0391 | 0.0394 | 0.0390 | 0.0391
u | 0.0450 | 0.0450 | 0.0450 | 0.0450 | 0.0450

/ and u have been appeared in equation (60).

In Table 8, note that the value of P(N;=1),Viis
higher than any other value of n, which implies that the
desirable number of cards in each cell is almost 1.

Table 8. Distribution of ()" in case of [P3]

n cell (1) | cell (2) | cell (3) | cell (4) | cell (5)
0 0.4737 | 0.3333 | 0.0909 | 0.3333 | 0.4737
1 0.5023 | 0.6177 | 0.7033 | 0.6183 | 0.5015
2 0.0240 | 0.0489 | 0.2058 | 0.0484 | 0.0237
3 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0011
4 0.0001
5 0.0000
21 0.0000
22 0.0000
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5. CONCLUDING REMARKS

Our model is described in terms of a 2-Card configura-
tion scheme. One aspect of the Pull serial line is that of a
system for extracting and converting information. The
other aspect is the item handling. It has shown that the
performances of the Pull serial line are able to be
compared to those of the Push serial line with an associated
buffer of finite capacity.

This viewpoint makes this author be interested in the
inter-departure process of the pull serial line. We have
proposed a numeric model and algorithm for the purpose
of computing the first two moments of the inter-departure
process subject to given service rate, demand rate and
number of cards in each cell. And via some experiments,
we have confirmed the validity and applicability of the
proposed model and algorithm.

Through these works, some structural properties have
been proved under the assumptions of an infinite supply of
raw materials and a backlogged demands :

(1) The assumption of an infinite supply of raw
material results in the same throughput in each cell, which
indicates that material flow in the pull serial line must be
conserved.

In addition, variance of inter-departure in each cell is
considerably reduced compared to a finite supply of raw
material in any case of either lower or true.

(2) Besides, if backlogged demands are permitted,
then these assumptions are equivalent to the statement that
the pull serial line is stable, that is, traffic intensities of
each cell must be smaller than 1.

Also, the throughput in each cell is identical to the
external demand rate. But there is no change in the
variance of inter-departure process in each cell. It follows
from this finding that management of raw material pool is
more important than that of external demand pool in a pull
serial line,

(3) Necessary and sufficient conditions for the
existence of optimal solution which enables us to get
ingight to the interaction between cells, and algorithm
implementing optimal solution have been theoretically
provided.

In particular, lower bound of variance of inter-
departure process has been derived. We can use this lower
bound in any approximate distribution associated with
performances under a general service scheme and demand
scheme.

Now we have been ready to give answers to the two
previous promising studies : Tayu 1(1993) and Mitra et af.
(1990).

To begin with, we consider the study of Tayur(1993).
Corollary 1 and corollary 2 described in Tayur(1993) are
all accepted but his remark may be rejected since
throughput in each cell is exact to demand rate under a
backlogged demand model. (see Theorem 1)

Sang-Woong Choe

The conjecture mentioned in Mitra er al.(1990) that
the optimal solution for arrival rates to each cell is unique
has been proved through our works(see Theorem 2 and
Theorem 3).

Finally, further researches with respect to this study
are briefly listed as follows :

(1) It may be proved that there exists the VPP(variability
propagation principle) in any pull serial line under
general environment (Suresh ef al. (1990)).

(2) The Bull-whip effect in SCM (supply chain manage-
ment) may be quantified.

(3) Any steady state performances including distributions
may be easily computed due to their relation to the
first two moments of the inter-departure process.

(#) Optimal arrangement of cells(stages) in the pull serial
lime and

(5} An equivalent push type serial line may be obtained in
view of the inter-departure process.
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