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ABSTRACT
Interferon-γ (IFN-γ) is well known as a potent inducer in monokine induced by IFN-γ 
(Mig) mRNA expression. Although lipopolysaccharide (LPS) alone is weakly effective 
on Mig mRNA expression. the stimulation of LPS and IFN-γ (LPS/IFN-γ simul-
taneously has been shown to synergize to produce a high level of Mig mRNA in mouse 
peritoneal macrophages. In this study, interleukin-10 (IL-10) was found to suppress the 
LPS/IFN-γ-induced Mig mRNA expression in cell type- and mouse strain-specific fash-
ion, but IFN-γ alone-induced Mig mRNA was unaffected by IL-10 under identical ex-
perimental conditions. The IL-10-mediated suppression of LPS/IFN-γ-stimulated Mig 
mRNA expression was dependent on the concentration of IL-10, and was prevented 
when the agent was added 2 hours after LPS/IFN-γ treatment. The suppressive action 
of IL-10 was dependent on a protein synthesis. However, IL-10 did not reduce the 
stability of LPS/IFN-γ-induced Mig mRNA. These data may have important impli-
cations for a previously unrecognized role for IL-10 as a regulator of synergistic effect 
of LPS on the IFN-γ-induced expression of the Mig gene in macrophages. (Immune 
Network 2002;2(1):12-18)
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Introduction
  The biologic properties of monokine induced by 
Interferon-γ (Mig) include the chemoattraction of 
activated T cells, the inhibition of endothelial cell 
chemotaxis, and the inhibition of growth factor-in-
duced angiogenesis in vivo (1,2). Studies in vivo and 
in vitro have indicated that IFN-γ is the only inducer 
of Mig in monocyte/macrophages, fibroblast and kera-
tinocytes (3). IFN-γ is generally considered to be a 
potent macrophage activator that interacts syner-
gistically with lipopolysaccharide (LPS) to induce in-
flammatory mediators like tumor necrosis factor-α 
(TNF-α) and inducible nitrogen oxide synthetase 
(iNOS), in addition to enhancing LPS-induced lethali-
ty (4-6). In a previous study (7), the role of LPS on 
IFN-γ-inducible Mig expression in murine macro-
phages was examined, and a marked synergy was 

found between LPS and IFN-γ in terms of inducing 
Mig mRNA expression.
  Interleukin-10 (IL-10) has an important regulatory 
role as it limits the duration and extent of acute in-
flammatory response. It has been shown to have 
profound effects on monocytes and macrophages by 
down-regulating the expressions of a number of 
cytokine genes (8-13). Although IL-10 is a well docu-
mented negative regulator of LPS-induced macro-
phage gene expression, the mechanisms have not 
been clearly defined. Multiple studies into the effects 
of IL-10 on cytokine gene expression have demon-
strated diverse mechanisms, including the modulation 
of transcription, mRNA stability, and mRNA trans-
lation (11,14-17).
  In this study, we investigated the inhibitory mecha-
nism of the action of IL-10 on LPS plus IFN-γ 
(LPS/IFN-γ)-induced Mig gene expression in thio-
glycollate (TG)-elicited mouse peritoneal macropha-
ges. Our results show that IL-10 inhibits LPS/IFN-
γ-induced Mig mRNA expression in a cell type, and 
a mouse strain specific fashion, and that this inhibi-
tory action of IL-10 does not reduce the stability of 
LPS/IFN-γ-induced Mig mRNA.
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Figure 1. Mouse strain- and cell type-specific expression of LPS and IFN-γ-induced Mig mRNA. Confluent monolayers of peritoneal 
macrophages from each species, RAW 264.7 macrophages, and BALB/c 3T3 fibroblasts were either (a) untreated or treated with (b) 
LPS (100 ng/mL), (c) IFN-γ ( 50 U/mL), or (d) LPS plus IFN-γ for 4 h. Total RNA was prepared and the levels of Mig mRNA 
were analyzed by Northern blot hybridization.

Materials and Methods
Reagents. Brewer's thioglycollate broth was purchased 
from Difco Laboratories (Detroit, USA). RPMI 1640, 
Dulbecco's phosphate-buffered saline (PBS), Hank's 
balanced salt solution (HBSS) and L-glutamin, try-
psin, and agarose were all purchased from Life Tech-
ologies Inc. (Gaithersburg, USA). The fetal bovine 
serum (FBS), phenol, guanidine isothiocyanate, cesi-
um chloride, and formamide were obtained from 
Gibco BRL (Gaithersburg, USA), the Magna nylon 
transfer membrane from Micron Separation Inc. 
(Westboro, USA), the high prime kits from Boehrin-
ger Mannheim (Indianapolis, USA), [α-32P]dCTP 
from Dupont-New England Nuclear (Boston, USA), 
trihydroxymethyl aminomethane (Tris), sodium dodecyl 
sulfate (SDS), and Escherichia coli LPS (O111:B4) from 
Sigma Chemical Co. (St. Louis), and the recombinant 
mouse IFN-γ (5×105 units/mg) and IL-10 were 
purchased from R&D Systems (Minneapolis, USA). 
The plasmid encoding Mig, and the GAPDH genes 
were kindly provided by Dr. Hamilton, at the De-
partment of Immunology, Lehner Research Institute, 
Cleveland Clinic Foundation, USA.
Mice. Specific pathogen free, inbred C57BL/6, BALB/c, 
and C3H/HeJ mice, 8 to 12 weeks of age were pur-
chased from Hyeuchang Science (Taegu, Korea). The 
utmost precautions were taken to ensure that the 
mice remained free from infection by environmental 
pathogens, thereby ensuring that the degree of spon-
taneous activation of tissue macrophages would be 
minimal.

Mouse peritoneal macrophages. Thioglycollate (TG)-elicited 
macrophages were obtained by Tannenbaum's me-
thod (18). Briefly, macrophages in a complete medi-
um were plated in 60 mm tissue culture dishes, incu-
bated for 2 h at 37oC in an atmosphere of 5% CO2, 
and then washed three times with HBSS to remove 
any non-adhering cells. The macrophages were cul-
tured overnight in a complete medium at 37℃ in 5% 
CO2, and then cultured in the presence or absence 
of stimuli for the indicated times.
Preparation of RNA and Northern hybridization analysis. 
Total cellular RNA was extracted using the guanidine 
thiocyanate-cesium chloride method (19). An equal 
amount of RNA (10μg/mL) was used in each lane 
of the gel. The RNA was denatured, separated by 
electrophoresis in a 1% agarose/2.2 M formaldehyde 
gel, and transferred to a nylon membrane, as previ-
ously described (16). The blots were prehybridized 
for 6 h at 42oC in 50% formamide, 1% SDS, 5× 
saline sodium citrate, 1× Denhardt's solution (0.02% 
bovine serum albumin and 0.02% polyvinylpyrroli-
done), 0.25 mg/mL denatured herring testis DNA, 
and a 50 mM of sodium phosphate buffer, pH 6.5. 
Hybridization was carried out at 42oC for 18 h with 
1×107 cpm of denatured plasmid DNA containing 
Mig and GAPDH cDNA inserts. The blots were 
rinsed with a solution of 0.1% SDS-0.2 X SSC, 
washed at 42oC for 1 h and at 65oC for 15 min. The 
blots were then dried and exposed using XAR-5 
X-ray film (Eastman Kodak Co. Rochester USA) at 
-70oC.
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Figure 2. IL-10-mediated suppression of the synergistic effect of 
LPS on IFN-γ-induced Mig mRNA. Confluent monolayers of 
Thioglycollate (TG)-elicited C57BL/6 mouse peritoneal macro-
phages were untreated (NT) or treated with LPS (100 ng/mL) 
and/or IFN-γ (50 U/mL), IL-10 (50 ng/mL) for 4 h. Total 
RNA was then prepared and Mig mRNA levels were analyzed 
by Northern blot hybridization. The data shown are repre-
sentative of three experiments.

Figure 4. Effect of IL-10 treatment time on LPS/IFN-γinduced 
Mig mRNA expression. TG-elicited C57BL/6 mouse peritoneal 
macrophages were untreated (NT) or treated with IFN-γ (50 
U/mL) and LPS (100 ng/mL) for a period of 4 h. Samples were 
exposed to IL-10 (50 ng/mL) 1 h before (T=-1), simultaneously 
(T=0), 1 h after (T=+1), or 2 h after (T=+2) the addition of 
LPS (100 ng/mL) and IFN-γ (50 U/mL). Total RNA was pre-
pared and analyzed for Mig and GAPDH mRNA levels as 
described in Materials and Methods.

Figure 3. Dose-dependence of IL-10-mediated suppression of 
LPS/IFN-γ-induced Mig mRNA expression in macrophages. 
TG-elicited C57BL/6 mouse macrophages were treated with LPS 
(100 ng/mL) or IFN-γ (50 u/mL) in the presence or in the 
absence of increasing concentrations of IL-10, as indicated, 4 h 
before Mig mRNA levels were determined, as described in 
Materials and Methods.

Results
Cell type- and mouse strain-specific expression of chemokine 
Mig mRNA. Initially, it was planned to assess the 
relative capacity of LPS/IFN-γ to induce Mig 
mRNA expression in mouse peritoneal macrophages 
using different strains and two cell types (Fig. 1). 
After the TG-elicited C57BL/6, BALB/c and C3H/ 
HeJ peritoneal macrophages were stimulated with 
LPS (100 ng/ml), IFN-γ (50 U/mL) or LPS plus 
IFN-γ (LPS/IFN-γ) for 4 h, a Northern analysis 
was performed. The LPS/IFN-γ-induced Mig mRNA 
expressions in C57BL/6 and BALB/c macrophages 
were significantly higher than in C3H/HeJ macro-
phages. However, LPS alone-induced Mig mRNA 
expression in BALB/c macrophages was undetec-
table. RAW 264.7 cells responded more effectively to 
LPS/IFN-γ stimulation than BALB/c 3T3 cells.
IL-10 acts to suppress LPS/IFN-γ-induced Mig mRNA 
expression in primary mouse macrophages. To assess the 
effect of IL-10 on LPS and IFN-γ-induced Mig 
mRNA expression, TG-elicited C57BL/6 peritoneal 
macrophages were treated with LPS, IFN-γ, and 
LPS/IFN-γ in the presence or absence of IL-10 for 
4 h (Fig. 2). IL-10 was found to suppress LPS/IFN-γ- 
induced Mig mRNA expression. However, IL-10 did 
not inhibit IFN-γ induced Mig mRNA expression.
  In order to determine whether the inhibition of Mig 
expression by IL-10 was dependent on the IL-10 
level, we investigated the effect of various IL-10 con-
centrations by adding IL-10 at 25 ng/mL, 250 ng/ 
mL, and 500 ng/mL to C57BL/6 peritoneal mac-
rophages at the same time as LPS and IFN-γ. Ac-

cordingly, we found that the suppression of LPS/ 
IFN-γ-induced Mig mRNA expression was depen-
dent upon the dose of IL-10. The higher concen-
tration of IL-10 showed a greater suppressive effect 
on Mig mRNA expression (Fig. 3). In order to 
determine whether the inhibition of Mig gene expres-
sion by IL-10 was dependent on the duration of 
macrophage exposure to IL-10, macrophages were 
treated with IL-10 either 1 h before, or 1 h or 2 h 
after, or at the same time as the LPS and IFN-γ 
additions. Mig mRNA levels were measured 4 h after 
adding the LPS/IFN-γ (Fig. 4). The suppressive ac-
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Figure 5. Effect of cycloheximide on IL-10-mediated suppres-
sion of LPS/IFN-γinduced Mig mRNA expression. TG-elicited 
C57BL/6 mouse peritoneal macrophages were untreated (NT) or 
treated with LPS (100 ng/mL) or IFN-γ (50 U/mL), or LPS 
and IFN-γ simultaneously in the presence or absence of 
cycloheximide (CHX, 10 ug/mL) for 4 h before analysis of Mig 
mRNA levels as described in Materials and Methods.

Figure 6. IL-10 does not reduce the stability of LPS/IFN-γinduced Mig mRNA. TG-elicited C57BL/6 mouse 
peritoneal macrophages were untreated (NT) or treated with LPS (100 ng/mL) and IFN-γ (50 U/mL) simultaneously 
in the presence or absence of IL-10 (50 ng/mL) for 4 h. Actinomycin D (ActD, 5 ug/mL) was added to all cultures 
except NT and the incubation continued for the indicated times before analysis of Mig and GAPDH mRNA levels 
by Northern blot hybridization.

tion of IL-10 was observed when it was added 1 h 
before and at the same time as LPS/IFN-γ. No 
effect was observed when it was added IL-10 2 h 
after the LPS/IFN-γ addition. These results indicate 
that the suppression of the expression of Mig mRNA 
is dependent on the time of exposure to IL-10.
Mechanisms of IL-10-mediated suppression of LPS/IFN-γ- 
induced Mig mRNA expression. If the suppressive action 
of IL-10 on LPS/IFN-γ-induced Mig mRNA ex-
pression is due to the induction of a new protein, 
this suppression may be blocked in macrophages co- 
treated with a protein synthesis inhibitor, such as 
cycloheximide (CHX). To test this possibility, macro-
phages were treated with only IL-10 or with IL-10 
in combination with LPS, IFN-γ, or LPS/IFN-γ in 
the presence or in the absence of CHX. It was found 
that when protein synthesis was inhibited with CHX, 
the suppressive effect of IL-10 was fully abrogated 
(Fig. 5).
  Alternations in specific mRNA levels can be caused 

by the modulation of the gene transcriptional activity 
and/or by mRNA degradation. To ascertain which 
mechanism(s) was involved, the half-life of LPS/ 
IFN-γ-induced Mig mRNA was measured in the 
presence or in the absence of IL-10. Macrophages 
were then stimulated with LPS plus IFN-γ simul-
taneously in the presence or absence of IL-10 for 4 
h before treatment with actinomycin D, which pre-
vents any further transcription. After an additional 
incubation of up to 180 min, the specific mRNA lev-
els were assessed by Northern blot hybridization (Fig. 
6). The steady state levels of Mig mRNA were similar 
in the IL-10-treated cells and those treated with only 
LPS/IFN-γ. This result indicates that IL-10 does 
not affect the stability of LPS/IFN-γ-induced Mig 
mRNA.

Discussion
  IFN-γ and LPS have been shown to enhance che-
moattractant cytokine gene expression in mononu-
clear phagocytes (4-7,20,21). The selective regulation 
of Mig gene expression may result from the differ-
ential response of macrophages to various stimuli and 
to cell type stimulus sensitivities (22-24). However, 
the physiologic significance of these diverse patterns 
of Mig mRNA expression is not well understood.
  The purpose of this study was to identify the IL-10 
mechanisms that regulate chemokine Mig gene ex-
pression by LPS/IFN-γ. IL-10 suppressed LPS/ 
IFN-γ-induced Mig mRNA expression in a cell type- 
and mouse strain-specific fashion, but IFN-γ alone- 
induced Mig mRNA was not affected by IL-10. The 
LPS-induced transcriptional activation of chemokine 
genes has been previously linked with the presence 
of NF-κB binding motifs in the region of the gene 
flanking the transcriptional start site (25,26), and an 
analysis of the Mig promoter reveals that there are 
three NF-κB binding sites on the 5’ promoter down-
stream of γRE-1 (24). In contrast, a recent study 
suggested that the IFN-γ induction of Mig is me-
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diated by the transcription factor γRF-1 (27). In-
deed, IL-10 has been reported to reduce or inhibit 
LPS-induced activation of the transcription factor 
NF-κB (28,29), which is likely to be a contributor 
to the control of Mig gene expression in mouse 
peritoneal macrophages.
  The mechanisms of the suppressive effects of IL- 
10 are incompletely understood. Many studies have 
demonstrated that IL-10 decreases the level of gene 
transcription, and the stability of the mRNAs, and/or 
reduces their translation. Several studies have demon-
strated that the inhibitory action of IL-10 is predom-
inantly at the level of decreased mRNA stability (11, 
30,31). In this study, however, IL-10 did not produce 
a decrease in the stability of LPS/IFN-γ-induced 
Mig mRNA. Repeated AU-rich sequence elements 
(AREs) in the 3'-untranslated region (3'-UTR) of 
several mRNAs have been shown to be responsible 
for a short mRNA half-life (32-34). Moreover, mRNAs 
encoding TNF-α, IL-1α, IL-1β, and GM-CSF, and 
the chemokine genes KC, MIP-1α, MIP-1β, and 
IL-8 have all been reported to be destabilized in 
IL-10-treated cells (8,10,11,16,35,36). A common 
feature of all of these mRNAs is the presence of 
multiple clusters of AU-rich sequences in the 3'UTR 
of their mRNAs. Thus, the IL-10-mediated inhibition 
of various cytokine gene expressions can be mediated 
by an AREs in the 3’UTR of sensitive genes. How-
ever, Mig mRNA lacks AREs in the 3’UTR.
  Some reports have also identified gene transcrip-
tion as a target for the anti-inflammatory action of 
IL-10 (13,37,38). However, transcription does not 
appear to be the predominant mode of IL-10 sup-
pression of the Mig gene induced by LPS/IFN-γ in 
this study (data not shown). In a previous study upon 
the mouse KC gene (11), IL-10 was found not to in-
hibit KC gene transcription, however, Horton et al 
(23) showed that IL-10 appeared to inhibit hyalu-
ronan-induced chemokine mRNAs expression, by 
altering both mRNA stability and gene transcription. 
These findings indicate that the mechanisms govern-
ing the expression of Mig due to various stimulators 
and in different cell types are specific and subject to 
distinct regulatory pathways.
  The mechanisms of the inhibitory action of IL-10 
appear to be diverse and depend on the gene of in-
terest, the nature of the stimulus, and the cell type. 
In this study, the suppressive effect of IL-10 on the 
expression of LPS/IFN-γ induced Mig mRNA does 
not act upon the stability of Mig mRNA and requires 
new protein synthesis. The inhibitory actions of IL-10 
in regulating Mig gene expression may have an im-
portant role in determining the physiologic response 
induced by LPS/IFN-γ. Further work is warranted 
to determine which mechanisms are linked with the 

inhibitory action of IL-10 on LPS/IFN-γ-induced 
Mig mRNA expression.
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