Effects of Mycorrhizal Inoculation on Plant Growth and N Metabolites in Relation to drought-stress Tolerance

Mycorrhiza 접종이 가뭄 스트레스하의 식물성장과 질소 대사산물에 미치는 영향

  • Lee, Bok-Rye (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Jung, Woo-Jin (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Dae-Hyun (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Kil-Yong (Department of Biological & Environmental Chemistry, College of Agriculture and Life Science, Chonnam National University) ;
  • Shon, Bo-Kyoon (Department of Agricultural chemistry, Sunchon National University) ;
  • Kim, Tae-Hwan (Department of Animal Science & Institute of Agriculture Science and Technology, Chonnam National University)
  • 이복례 (전남대학교 농업생명과학대학 동물자원학과) ;
  • 정우진 (전남대학교 농업생명과학대학 동물자원학과) ;
  • 김대현 (전남대학교 농업생명과학대학 동물자원학과) ;
  • 김길용 (전남대학교 농업생명과학대학 생물환경화학과) ;
  • 손보균 (순천대학교 농과대학 농화학과) ;
  • 김태환 (전남대학교 농업생명과학대학 동물자원학과 & 농업과학기술연구소)
  • Received : 2002.09.02
  • Accepted : 2002.09.26
  • Published : 2002.10.30

Abstract

The effects of arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on plant growth and N metabolic responses were examined in perennial ryegrass plants exposed to drought-stressed or well-watered condition. Mycorrhizal inoculation improved significantly leaf water potential, dry mass and P content. Drought stress increased significantly nitrate concentration in roots where the increase was much less in AM than non-AM. Drought stress decreased the concentration of soluble proteins in non-AM shoots, whereas non-significant decline occurred in AM shoots even under drought condition. The concentrations of ammonia and proline in drought stressed non-AM plants significantly increased, while mycorrhizal inoculation lowered significantly ammonia and proline accumulation. The decrease in leaf dry weight in drought stressed-plants was significantly correlated to the increase in ammonia (p<0.01) and proline concentration (p<0.01). These results suggested that the increased P content and N assimilation by mycorrhizal inoculation may be associated with drought stress tolerance, showing the moderating effects on shoot growth inhibition and ammonia accumulation in drought stressed-plants.

페레니얼 라이그라스의 가뭄스트레스 저항성과 관련하여 균근균(mycorrhiza) 접종이 작물생장 및 질소대사 산물에 미치는 영향을 조사하였다. 균근균 접종에 의한 잎의 수분퍼텐셜, 건물량 및 인의 함량의 유의적인 증가가 인정되었다. 가뭄스트레스 상태에서 뿌리의 질산염 농도는 증가하였으며, 균근균 비접종구가 접종구에 비하여 현저하였다. 잎의 수용성 단백질 함량은 가뭄 스트레스 하에서 균근균 비접종구가 접종구에 비해 현저히 감소하였다. 전 실험기간 동안 가뭄 스트레스 처리구의 암모니아와 proline의 농도는 현저히 증가하였으며, 균근균 접종구에서는 증가가 현저히 완화되었다. 가뭄 스트레스 하에서 잎의 건물량 감소는 암모니아(p<0.01)와 proline(p<0.001) 농도의 증가와 부의 유의적인 상관성을 보였다. 이상의 결과로 볼 때, 균근균의 접종 효과는 가뭄 스트레스 하에서 작물의 성장 억제를 완화시켰으며, 인의 함량과 질소의 동화 작용을 증가 시켰다.

Keywords

References

  1. Azcon, R, M. Gomez and R. Tobar. 1996. Physiological and nutritional responses by Lactuca sativa L. to nitrogen sources and mycorrhizal fungi under drought conditions. Bio. Fertil Soil 22:156-161 https://doi.org/10.1007/BF00384448
  2. Bates, L.S., R. P. Waldren and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207 https://doi.org/10.1007/BF00018060
  3. Bethlenfalvay, G. J., M. S. Brown, R. N. Ames and R. E. Thomas. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol. plant 72:565-571 https://doi.org/10.1111/j.1399-3054.1988.tb09166.x
  4. Bethlenfalvay, G. J., M. G. Reyes-soils, S. B. Camel and R Ferrera-Cerrato. 1991. Nutrlent transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiol. Plant. 82: 423- 432 https://doi.org/10.1111/j.1399-3054.1991.tb02928.x
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254
  6. Brundrett, M. C., Y. Piche and R. L. Peterson. 1984. A new method for observing the morphology of vesicular- arbuscular mycorrhizae. Can. J. Bot 62:2128-2134 https://doi.org/10.1139/b84-290
  7. Cataldo, D. A . 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 6: 71-80 https://doi.org/10.1080/00103627509366547
  8. Chiariello, N., J. C. Hickman and H. A. Mooney. 1982. Endo mycorrhizal role for interspecific transfer of phosphorus in a community of annual plants. Sci. 217:941-943 https://doi.org/10.1126/science.217.4563.941
  9. Faber. B. A., R. J. Zasoskl, D. N. Munns and K. Shackel. 1991. A method for measuring nutrient and water uptake in mycorrhizal plants. Can. J. Bot. 69: 87-94
  10. Francis, R., R D. Flnlay and D. J. Read. 1986. Vesicular- arbuscular mycorrhiza in natural vegetation system. IV. Transfer of in inter- and intra-specific combinations of host plants. NewPhytol. 102:103-111
  11. George, E., H. Manschner and I. Jakobsen. 1995. Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev. Biotech. 15:257-270
  12. Kim, K. Y., D. Jordan and G. A. McDonald. 1998. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Bio. Fertil. Soils. 26: 79-87
  13. Lazcano-Ferrat, I. and C. J. Lovatt. 1999. Relationship between relative water content, nitrogen pools, and growth of phaseolus vulgaris L. and P. acutifolius A. gray during water deficit Crop Sci. 39: 467-475 https://doi.org/10.2135/cropsci1999.0011183X0039000200028x
  14. Lea, P. M., D. Blackwell, F. Chen and U. Hecht. 1990. Einzymes of ammonia assimilation. p.257-276. In P. J. Lea (ed), Methods in plant biochemistry, Vol. 3. Acadmic press, London
  15. Nadian, H., S. E. Smith, A. M. Alston and R S. Murray. 1997. Effects of soil compacton on plant growth, phosphorus uptake and morpholgical characteristics of vesicular- arbuscular mycorrhizal colonization of Trifoliium subterraneum. New Phytol. 135:303-311 https://doi.org/10.1046/j.1469-8137.1997.00653.x
  16. Oaks, A. 1994. Primary nitrogen assimilation in higher plants and its regulation. Can. J. Bot. 72: 739-750 https://doi.org/10.1139/b94-094
  17. Oliver, A. J., S. E. Smith., D. J. D. Nicholas, W. Wallace and F. A. Smith. 1983. Activity of nitrate reductase in Trifolium subterraneum: Effect of mycorrhizal infection and phosphate nutrition. NewPhytol. 94: 63-79
  18. Rabe, E. and C. J. Lovatt. 1986. Increased argininebiosynthesis during phosphorous deficiency. Plant Physiol. 81: 774-779 https://doi.org/10.1104/pp.81.3.774
  19. Raj, J., D. J. Bagyaraj and A. Manjunath. 1981. Influence of soil inoculation with vesicular-arbuscular mycorrhiza and a phosphate-dissolving bacterium on plant growth and ^{32}P uptake. Soil Bio. Biochem. 13:105-108
  20. SAS Institiute Inc. 1989. SAS users guide: statistics, version 6.4^{th} ed. Vol. 2. SAS Institute Inc., Cary. N. C
  21. Sass, J. E. 1958. Botanical microtechnique. 3rd ed. Iowa State University Press. Ames. IA Sivasankar, S. and A. Oaks. 1995. Regulation of nitrate reductase during early seedling growth: A role for asparagines and glutamine. Plant Physiol 107: 1225-1231
  22. Smith, S. E. and D. J. Read. 1997. Mineral nutrition, heavy metals accumulation and water relations in VA mycorrhizas. p. 126-160. In S. E. Smith and D. J. Read (eds), Mycorrhizal symbiosis. Academic press, San Diego, CA
  23. Smlth, S. E. and V. Gianinazzi-Pearson. 1988. Physiological interactions between symbionts in AM plants. Annu, Rev. Plant Physiol. Plant Moi. Biol. 39:221-244
  24. Stewart, C. R and S. Boggess. 1977. The effect of wilting on the conversion of arginine, ornithine and glutamate to proline in bean leaves. Plant Sci. Letter 8:147-153 https://doi.org/10.1016/0304-4211(77)90025-6
  25. Subramanian, K. S. and C. Charest. 1995. Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5: 272-278
  26. Subramanian, K. S. and C. Charest. 1998. Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and reoovery. Physiol. Plant 102: 285-296 https://doi.org/10.1034/j.1399-3054.1998.1020217.x
  27. Subramanian, K. S. and C. Charest. 1999. Acqusition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9: 69-75 https://doi.org/10.1007/s005720050002
  28. Tobar, R M., R Azcon and J. M. Barea. 1994a. Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhizae under water-stressed conditions. New Phytol. 126:119-122 https://doi.org/10.1111/j.1469-8137.1994.tb07536.x
  29. Tobar, R. M., R. Azcon and J. M. Barea. 1994b. The improvement of plant N acquision from an ammonium- treated, drought-stressed soil by the fungal symbiont in arbuscular mycorrhizae. Mycorrhiza 4: 105-108 https://doi.org/10.1007/BF00203769
  30. Turnbull, M. H., R. Goodall and G. R. Stewart. 1996. Evaluating the contribution of glutamate dehydrogenase and the glutamate synthase cycle to ammonia assimilation by four ectomycorrhizal fungal isolated. Aust. J. Plant Physiol. 23: 151-159
  31. Toro, M., R. Azcon and J. M. Barea. 1998. The use of isotopic dilution techniques to evaluate the interactivity effects of Rhizobium genotype, mycorrhizal fungi, phosphate- solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol. 138: 265-273 https://doi.org/10.1046/j.1469-8137.1998.00108.x
  32. Warner, R. H. and R C. Huffaker. 1989. Nitrate transport is independent of NADH and NADPH nitrate reductases in barley seedlings. Plant Physiol. 91: 947-953 https://doi.org/10.1104/pp.91.3.947
  33. Yang, C. W. and C. H. Kao. 2000. Ammonium in relation to proline accumulation in detached rice leaves. Plant Growth Regul. 30: 139-144 https://doi.org/10.1023/A:1006329919243