Nitrogen Release and Polymer Degradation Properties of Polymer-Coated Urea Fertilizer in Soil

고분자 피복요소비료의 질소용출 및 토양중 분해특성

  • Kang, Byung-Hwa (Division of Environmental and Agricultural Sciences, Sunchon National University) ;
  • Ha, Byoung-Yeun (Namhae Chemical Corporation) ;
  • Park, Ki-Do (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Park, Moon-Su (Division of Forest Resources and Landscape Architecture, Sunchon National University) ;
  • Sohn, Bo-Kyoon (Division of Environmental and Agricultural Sciences, Sunchon National University) ;
  • Jeong, Yeun-Kyu (Division of Environmental and Agricultural Sciences, Sunchon National University) ;
  • Heo, Jong-Soo (Dept. of Agricultural chemistry, Gyoungsang National University) ;
  • Cho, Ju-Sik (Division of Environmental and Agricultural Sciences, Sunchon National University)
  • Received : 2002.06.19
  • Accepted : 2002.07.13
  • Published : 2002.10.30

Abstract

Nitrogen releasing characteristics of polymer-coated urea(PCU) that made acrylic synthetic resins were studied in incubated soil, water and paddy soil. Also, their correlations and degradation patterns of coating material were tested. Releasing rate of nitrogen from PCU decreased with increasing coating rate. N001(coating rate 8.5%) and N003(coasting rater 6.3%) were low releasing amount at the early stage, whereas N005(coating rate 4.8%) was released over 80% within 20 days. Relationship of the releasing rate between incubated soil($25^{\circ}C$) and paddy soil could be described as follows : $Y=-0.0011X^2+2.2931X-50.264(R^2=0.9884)$ for N001, $Y=-0.0016X^2+1.1587X+5.5064(R^2=0.9805)$ for N003 and $Y=-0.03X^2+6.499X-243.22(R^2=0.9422)$ for N005, respectively (Y: release rate at field condition, X: experiment period). Relationship of the releasing rate between incubated water($30^{\circ}C$) and paddy soil can be described as follows : $Y=0.0011X^2+2.2601X-25.329(R^2=0.9884)$ for N001, $Y=-0.0306X^2+4.4994X-76.307(R^2=0.955)$ for N003 and $Y=-0.0164X^2+3.7764X-108.22(R^2=0.9422)$ for N005. After 150 days, coating materials of N001, N003, and N005 in incubated soil were degraded approximately 23%, 22% and 15%, respectively. Also The scanning electron microscope examination of coating material revealed that particle surface became gradually shattered with the time after the soil treatment.

질소원으로 사용되고 있는 요소비료에 고분자 아크릴을 물리적으로 피복하여 제조된 완효성 요소비료의 피복율에 따른 포장용출율, 수중 및 토양중 용출율을 측정하여 이들간의 상관관계에 토양에서 피복물질의 분해특성을 조사하였다. 공시 피복요소비료의 수중 질소용출율과 토양중 질소용출율은 피복율이 낮을수록 용출율은 높았으며 온도가 높을수록 용출속도는 증가하였다. 질소의 용출패턴은 polymer의 피복율의 낮을수록 초기에 급격하게 용출되었고, 피복율이 높을수록 질소용출은 지연되었다. 그리고 토양중 용출속도는 수중조건에 비하여 전반적으로 빠르게 용출되었으며, 실제 포장에서의 용출특성은 항온 토양매립 조건과 유사한 경향을 나타내었다. 실내 토양 매립 조건과 실제 포장에서의 상관관계는 피복율 8.5%인 N001에서 $Y=-0.0011X^2+2.2931X-50.264(R^2=0.9884)$, 피복율 6.3%인 N003은 $Y=-0.0016X^2+1.1587X+5.5064(R^2=0.9850)$ 그리고 피복율 4.8%인 N005는 $Y=-0.03X^2+6.4999X-243.22(R^2=0.9422)$ (Y:포장용출율, X:시험기간)의 관계식을 나타내었다. 그리고 실내 수중조건과 실제 포장에서의 상관관계는 피복율 8.5%인 N001에서 $Y=-0.0011X^2+2.2601X-25.329(R^2=0.9884)$, 피복율 6.3%인 N003은 $Y=-0.0306X^2+4.4994X-76.307(R^2=0.955)$ 그리고 피복율 4.8%인 N005는 $Y=-0.0164X^2+3.7764X-108.22(R^2=0.9422)$의 관계식을 나타내었다. 피복물질인 고분자 아크릴 피복제의 논토양에 매립 기간에 따른 피막의 중량변화는 토양매립 150일 경과 후 피복율 8.5% 비료에서 약 23%, 피복율 6.3% 비료에서 약 22% 그리고 피복율 4.8% 비료에서 약 15%정도 감소되었다.

Keywords

References

  1. Ann-Christine. Albertsson. Andersson, S. 0. and Karlsson S. 1987. The mechanism of biodegradation of polyethylene. polymer degradation and stability. 18: 73-87 https://doi.org/10.1016/0141-3910(87)90084-X
  2. Eya. H., M. Hirano, T. Ohtani and A. Ohno. 1998. Biodegradability in soil and composting of synthetic polyester. Kobunshi Ronbunshu. 55(9). 540-548 https://doi.org/10.1295/koron.55.540
  3. Eya, H., Y. Otuji, T, Nagai and K. Hattori. 1997. Biodegradability in soil and composting of microbial polyester. Kobunshi Ronbunshu. 54(8), 463-470 https://doi.org/10.1295/koron.54.463
  4. Glenn. M. B., W. R. Donald. and E. M. Oscar. 1971. Sulfur-coated fertilizers for controlled release: pilot plant production. J. Agr. Food chem. 19(5) : 801 808 https://doi.org/10.1021/jf60177a039
  5. Han, M. H. 1995. Effects of slow-released nitrogen fertilizers on yield of Radish(Raphanus sativa L.) and Lettuce(Lactuca sativa L.) Dongguk University. M.S. thesis
  6. Jarrel. W. M. and L. Boersma. 1979. Model for the release of urea by granules of sulfur-coated urea applied to soil. Soil Sci. Soc. Am. J. 43: 1044-1050 https://doi.org/10.2136/sssaj1979.03615995004300050046x
  7. Kim, B. J. 1975. Studies on the manufacture and response on rice of slow releasing nitrogen fertilizer (sulfur coated urea). Seoul University. M.S. thesis
  8. Ko, B. S. 1994. Modeling and experimental study on the controlled release of urea from coated fertilizer particles. Seoul University. M.S. thesis
  9. Lee. Il Hee. 1995. Study on the degradable polymer coated fertilizer. Yeungnam University. M.S. thesis
  10. Lunt. O. R. 1971. Controlled-release fertilizer achievements and potential. J. Arg. Food Chem. 19 : 797-800
  11. Park, T. H.. E. J. Kim and P. K. Shin. 1998 Measurement and acceleration of biodegradation in soil. Kor. J. AppI. Microbiol. biotechnol. 26(5): 465- 469
  12. Shin. J. S. 1988. Fertilizer technology and use. J. Korean Soc. Soil Sci. Fert. 21(S.I) : 119-125
  13. Smith. J. L. 1994. Cycling of nitrogen through microbial activity, pp. 91-117. In J. L. Hatfielld and B. A. Stewart(eds.). Soil Biology: Effects on Soil Quality. Lewis Publishers. Boca Raton
  14. Yoo, C. H. 1999. Application effects of latex costed urea on fertilizer N-use efficiency and environment in rice paddy. Wonkwang University. Doctoral thesis