THE ORPHAN STRUCTURE OF $B C H(3, m)$ CODE

Geum-sug Hwang

Abstract

If C is a code, an orphan is a coset without any parent. We investigate the structure of orphans of the code $\operatorname{BCH}(3, m)$. All weight 5 cosets and all weight 3 reduced cosets are orphans, and all weight 1,2 and 4 are not orphans. We conjecture that all weight 3 unreduced cosets are not orphans. We prove this conjecture for $m=4,5$.

1. Introduction

An $[n, k]$ code C over F_{q} is a k-dimensional subspace of the n-tuple space $G F\left(q^{n}\right)$. An $[n, k]$ code C can be specified by k linearly independent vectors in C. A k by n matrix G over F_{q} whose rows forms a basis of C is called generator matrix of C and $C=\left\{x=u G \mid u=\left(u_{1}, u_{2}, \cdots, u_{k}\right), u_{i} \in F_{q}\right\}(* 1)$. Also C can be specified by $n-k$ linearly independent homogeneous equations. A $n-k$ by n matrix H such that $C=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid H x^{t}=0, x_{i} \in F_{q}\right\}(* 2)$ is called parity check matrix for C. $(* 1)$ and $(* 2)$ together imply that G and H are related by $G H^{t}=0$ and $H G^{t}=0$. A coset of a code C is the set $a+C=\{a+x \mid x \in C\}$ for any vector a. Each vector b is in some coset and each coset contains q^{k} vectors. For a vector $b, s=H b^{t}$ is the syndrome of b where s is a column vector of length $n-k$. Two vectors are in same coset if and only if $H a^{t}=H b^{t}$. Hence there are one to one correspondence between syndromes and cosets. A minimum weight vector in a coset is called a coset leader and the coset weight is the weight of a coset leader. The cosets of C are partially ordered by defining for two cosets C^{\prime} and $C^{\prime \prime}$ of $C, C^{\prime} \leq C^{\prime \prime}$ provided there is a coset leader x^{\prime} of C^{\prime} and a coset leader $x^{\prime \prime}$ of $C^{\prime \prime}$ such that $x^{\prime} \leq x^{\prime \prime}$. Here for the vectors $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{n}^{\prime}\right)$ and $x^{\prime \prime}=\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, \cdots, x_{n}^{\prime \prime}\right), x^{\prime} \leq x^{\prime \prime}$ means that $x_{i}^{\prime \prime} \neq 0$ whenever $x_{i}^{\prime} \neq 0$. The $\operatorname{coset} C^{\prime}$ is a child of $C^{\prime \prime}$, and $C^{\prime \prime}$ is a parent of C^{\prime}, provided $C^{\prime} \leq C^{\prime \prime}$ and there is no coset D with $C^{\prime}<D<C^{\prime \prime}$. An orphan is a coset without any parent.

[^0]This research was supported by PUFS under grant PUFS-2000

Let $B C H(t, m)$ denote the binary Bose-Chaudhuri-Hocquenghem code of primitive length $n=2^{m}-1$ and design distance $\delta=2 t+1$. We investigate the orphan structure of the code $B C H(3, m)$ code. The $B C H(3, m)$ code, $m \geq 4$, is the null space of the 3 by n matrix H over $G F\left(2^{m}\right)$ given by

$$
H=\left[\begin{array}{ccccc}
1 & \alpha & \alpha^{2} & \cdots & \alpha^{n-1} \\
1 & \alpha^{3} & \alpha^{6} & \cdots & \alpha^{3(n-1)} \\
1 & \alpha^{5} & \alpha^{10} & \cdots & \alpha^{5(n-1)}
\end{array}\right]
$$

where α is a primitive element of $G F\left(2^{m}\right)$. The syndrome s of a received word $r=$ $\left(r_{0}, r_{1}, \cdots, r_{n-1}\right)$ is $s=H r^{t}=\left(S_{1}, S_{3}, S_{5}\right), S_{j} \in G F\left(2^{m}\right)$. The cosets are the set $C(s)=\left\{r: H r^{t}=s\right\}$. Given an arbitrary binary n-tuple $a=\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ of weight ω, the locator polynomial of a is the polynomial of degree ω defined by

$$
\sigma(X)=\prod_{\left\{i: a_{i} \neq 0\right\}}\left(X+\alpha^{i}\right)=X^{\omega}+\sigma_{1} X^{\omega-1}+\cdots+\sigma_{\omega} .
$$

The roots of the locator polynomial of a indicate the coordinate positions which are 1 in a. There is a one to one correspondence between binary n-tuples and locator polynomials. A locator polynomial $\sigma(X)=\prod_{i=1}^{\omega}\left(X+A_{i}\right)$ of degree ω is called an error locator polynomial with syndrome s provided it is the locator polynomial of a coset leader of a coset $C(s), s=\left(S_{1}, S_{3}, S_{5}\right)$ of weight ω. This implies that $S_{j}=$ $\sum_{i=1}^{\omega} A_{i}^{j}, j=1,3,5$. We give the relation between the coefficients σ_{i} of the locator polynomial $\sigma(X)$ and the components S_{j} of its syndrome, namely $S_{1}=\sigma_{1}, S_{3}=$ $\sigma_{1} S_{1}^{2}+\sigma_{2} S_{1}+\sigma_{3}$ and $S_{5}=\sigma_{1} S_{1}^{4}+\sigma_{2} S_{3}+\sigma_{3} S_{1}^{2}+\sigma_{4} S_{1}+\sigma_{5}$.

We define the syndrome $\left(T_{1}, T_{3}, T_{5}\right)$ to be reduced provided that $T_{1}=0$. A coset with reduced syndorme is called a reduced coset and a coset with $T_{1} \neq 0$ is called an unreduced coset. The transform of $C(s), s=\left(S_{1}, S_{3}, S_{5}\right)$ is the reduced coset $C(t)$ with syndrome $t, t=\left(T_{1}, T_{3}, T_{5}\right)=\left(0, S_{3}+S_{1}^{3}, S_{5}+S_{1}^{5}\right)$. Note that two different cosets can have the same transform. Any coset $C(s)$ of weight 1 has syndrome $s=\left(S_{1}, S_{1}^{3}, S_{1}^{5}\right)$, and so its transform is the code $C(0)$. Hence if $t \neq 0$ then $C(s)$ has weight >1. The covering radius of a code is the largest weight of orphan. The existence of orphans of weight less than covering radius complicates the determination of the covering radius of a code. Let's start with the following characterization of orphan given by R. A. Brualdi and V. S. Pless.

Theorem 1.1 Let C^{\prime} be a coset of C with weight ω. Then C^{\prime} is an orphan if and only if the vectors of C^{\prime} with weights ω and $\omega+1$ cover all coordinate positions.

Proof We first note that each parent of C^{\prime} is of the form $e_{i}+C^{\prime}$ for some unit vector $e_{i}, 1 \leq i \leq n$. If the vectors of weight w and $w+1$ of C^{\prime} cover all coordinate positions, then the weight of $e_{i}+C^{\prime}$ is either $w-1$ or w and hence $e_{i}+C^{\prime}$ cannot be a parent
of C^{\prime}. Now suppose that C^{\prime} is an orphan. If there is a coordinate position j which is not coverd by any vector of weight w or $w+1$ of C^{\prime}, then $e_{j}+C^{\prime}$ contains a vector of weight $w+1$ but contains no vectors of weight w, and it follows that $e_{j}+C^{\prime}$ is a parent of C^{\prime}.

Let a coset C^{\prime} of a code C of distance d have weight $\omega, \omega<\lfloor(d-1) / 2\rfloor$. If there are two vectors u, v in C^{\prime} of weight ω or $\omega+1$, then the vector $u+v$ is a codeword and its weight is less than d, contradicting the distance of C is d. Hence such a coset C^{\prime} cannot be an orphan by theorem 1.1.

Since the distance of $\operatorname{BCH}(3, m)$ is 7 , all cosets of weight 1 and 2 are not orphans. Since the maximal coset weight of $B C H(3, m)$ is 5 , it is trivial that all cosets of weight 5 are orphans. Hence it remains only to investigate cosets of weight 3 and 4 . We note that a coset of weight 3 has a unique coset leader. We now use the notation $\sigma_{k}(X)$ to denote a locator polynomial of degree k.

Lemma 1.2 Let $\sigma_{2 k-1}(X)=\prod_{i=1}^{2 k-1}\left(X+A_{i}\right), k \geq 1$, be the locator polynomial of a vector of a reduced coset $C(t)$. If $L \sigma_{2 k-1}(L) \neq 0$ for some $L \in G F\left(2^{m}\right)$, then $(X+L) \sigma_{2 k-1}(X+L)$ is a locator polynomial of degree $2 k$ with syndrome t. Conversely, if $\sigma_{2 k}(X)$ is any even degree locator polynomial with syndrome t and L is one of its roots, then $\sigma_{2 k}(X+L) / X$ is a locator polynomial of degree $2 k-1$ with syndrome t.

Proof Since $\sigma_{2 k-1}(X)$ is a locator polynomial, its roots $A_{i}, i=1, \cdots, 2 k-1$ are distinct nonzero elements of $G F\left(2^{m}\right)$. It follows from the condition $L \sigma_{2 k-1}(L) \neq 0$ that L and $A_{i}+L$ are also distinct and nonzero so that $\sigma_{2 k}(X)=(X+L) \sigma_{2 k-1}(X+L)$ is also locator polynomial. To show that $\sigma_{2 k}(X)$ has syndrome t it suffices to show that $L^{j}+\sum_{i=1}^{2 k-1}\left(A_{i}+L\right)^{j}=\sum_{i=1}^{2 k-1} A_{i}^{j}, j=1,3,5$. Since $\sum_{i=1}^{2 k-1} A_{i}=0$, we also have $\sum A_{i}^{2}=0$ and $\sum A_{i}^{4}=0$. Hence $L+\sum\left(A_{i}+L\right)=\sum A_{i}=0$ and $L^{j}+\sum\left(A_{i}+L\right)^{j}=$ $\sum A_{i}^{j}$ by expanding $\left(A_{i}+L\right)^{j}, j=3,5$.

Conversely suppose that L is one of the roots of an even degree locator polynomial $\sigma_{2 k}(X)$. Let $A_{1}, \cdots, A_{2 k}$ be the roots of $\sigma_{2 k}(X)$ and assume $L=A_{1}$. Since all $A_{i}, i=1, \cdots, 2 k$ are nonzero and distinct, $L+A_{i}=A_{1}+A_{i}$ are also distinct and nonzero. Hence $\sigma_{2 k}(X+L) / X$ is a locator polynomial of degree $2 k-1$. Since $L^{j}+$ $\sum_{i=2}^{2 k}\left(A_{i}\right)^{j}=0, j=1,2,4$

$$
\begin{aligned}
\sum_{i=2}^{2 k}\left(A_{i}+L\right)^{j} & =\sum\left(A_{i}\right)^{j}+L\left(\sum\left(A_{i}\right)^{j-1}\right)+L^{j-1}\left(\sum A_{i}\right)+L^{j} \\
& =\sum\left(A_{i}\right)^{j}+L L^{j-1}+L^{j-1} L \\
& =\sum\left(A_{i}\right)^{j}, j=1,3,5 .
\end{aligned}
$$

Thus $\sigma_{2 k}(X+L) / X$ also has syndrome t.

Henceforth we denote a binary n - tuple A of weight ω with 1 's in positions $i_{1}, i_{2}, \cdots, i_{\omega}$ by $A=\left\{A_{1}, A_{2}, \cdots, A_{\omega}\right\}=\left\{\alpha^{i_{1}}, \alpha^{i_{2}}, \cdots, \alpha^{i_{\omega}}\right\}$.

Corollary 1.3 Any weight 4 vector of weight 3 reduced coset $C(t)$ has the form $\left\{L, A_{1}+L, A_{2}+L, A_{3}+L\right\}$ for some $L \in G F\left(2^{m}\right), L \neq 0, A_{i}, i=1,2,3$ where $\left\{A_{1}, A_{2}, A_{3}\right\}$ is the unique coset leader of $C(t)$.

Proof Let $\sigma_{3}(X)=\prod_{i=1}^{3}\left(X+A_{i}\right)$ be the error locator polynomial of $C(t)$. For any nonzero $L \in G F\left(2^{m}\right)$, if $L \neq A_{i}, i=1,2,3$ then $L \sigma_{3}(L) \neq 0$. Hence $(X+L) \sigma_{3}(X+L)$ is locator polynomial of degree 4 with syndrome t by Lemma 1.2. This implies that $\left\{L, A_{1}+L, A_{2}+L, A_{3}+L\right\}$ is a weight 4 vector of $C(t)$. Since the distance of $B C H(3, m)$ is 7 , any two distinct locator polynomials of degree 4 with syndrome t have no common root. From the converse part of Lemma 1.2 and uniqueness of the coset leader of $C(t)$, any weight 4 vector of $C(t)$ has this form.

Theorem 1.4 The weight $\tilde{\omega}$ of a reduced coset $C(t)$ is either zero or an odd integer ≥ 3.

Proof Because any coset of weight 1 has syndrome $s=\left(S_{1}, S_{1}^{3}, S_{1}^{5}\right), S_{1} \neq 0, \tilde{w}$ cannot be one. Assume that \tilde{w} is positive and even, say $\tilde{w}=2 k$. Let $\sigma_{2 k}(X)$ be an error locator polynomial with syndrome t, and let L be a root of $\sigma_{2 k}(X)$. Define $\sigma_{2 k-1}(X)=\sigma_{2 k}(X+L) / X$. Then $\sigma_{2 k-1}(X)$ is a locator polynomial with syndrome t by Lemma 1.2, contradicting \tilde{w} is the weight of $C(t)$.

We get the relation between error locator polynomial of coset $C(s)$ and that of its transform $C(t)$ from the next theorem which is in [2]T. Berger and V. A. Van Der Horst. Henceforth we denote a binary n-tuple A of weight ω with 1's in positions $i_{1}, i_{2}, \cdots, i_{\omega}$ by $A=\left\{A_{1}, A_{2}, \cdots, A_{\omega}\right\}=\left\{\alpha^{i_{1}}, \alpha^{i_{2}}, \cdots, \alpha^{i_{\omega}}\right\}$. Two vectors are disjoint provided their locator polynomials have no common roots.

Theorem 1.5 Let $C(s)$, $s=\left(S_{1}, S_{3}, S_{5}\right)$ be a coset of weight $\omega>1$. Then an error locator polynomial $\sigma(X)$ with syndrome s can be obtained from an error locator polynomial $\tilde{\sigma}(X)$ of its transform by

$$
\sigma(X)= \begin{cases}\tilde{\sigma}(X), & \text { if } S_{1}=0 \\ \tilde{\sigma}(X) /\left(X+S_{1}\right), & \text { if } S_{1} \neq 0, \omega \text { even } \\ \tilde{\sigma}\left(X+S_{1}\right), & \text { if } S_{1} \neq 0, \omega \text { odd } .\end{cases}
$$

Proof If $S_{1}=0$, then $t=s$ and $\sigma(X)=\tilde{\sigma}(X)$, so we need only consider $S_{1} \neq 0$.
Case 1: ω is even. By Theorem 1.4, $\tilde{\omega}$ equals either $\omega-1$ or $\omega+1$. Assume that $\tilde{\omega}=\omega-1$. Then $\tilde{\sigma}\left(S_{1}\right)$ cannot equal zero because that implies $\tilde{\sigma}(X) /\left(X+S_{1}\right)$ is a locator polynomial of degree $\tilde{\omega}-1=\omega-2$ with syndrome s, thereby contracting $C(s)$
has weight w. Thus $\tilde{\sigma}\left(X+S_{1}\right)$ has distinct nonzero roots and is a locator polynomial. Therefore $\tilde{\sigma}\left(X+S_{1}\right)$ has weight $\tilde{w}=w-1$ with syndrome s because we have

$$
\begin{aligned}
\sum_{i=1}^{\tilde{w}}\left(A_{i}+S_{1}\right)^{j} & =\sum\left(A_{i}\right)^{j}+S_{1}\left(\sum\left(A_{i}\right)^{j-1}\right)+S_{1}^{j-1}\left(\sum A_{i}\right)+\sum S_{1}^{j} \\
& =T_{j}+S_{1}^{j}, j=1,3,5
\end{aligned}
$$

since $\left(\sum A_{i}\right)^{j-1}=\sum A_{i}=0$ where $A_{i}, i=1, \cdots, \tilde{w}$ are roots of $\tilde{\sigma}(X)$. This contradicts that $C(s)$ has weight w, so $\tilde{w}=w+1$. It follows that $\sigma\left(S_{1}\right) \neq 0$. Otherwise, $\sigma(X) /\left(X+S_{1}\right)$ is a locator polynomial with syndrome t and degree $w-1$, which would contradict that $C(t)$ has weight $\tilde{w}=w+1$. Since we now know that $\sigma\left(S_{1}\right) \neq 0$ and $\tilde{w}=w+1, \tilde{\sigma}(X)=\left(X+S_{1}\right) \sigma(X)$ is an locator polynomial with syndrome t, or $\sigma(X)=\tilde{\sigma}(X) /\left(X+S_{1}\right)$.

Case 2: w is odd. By Theorem 1.4, $\tilde{w}=w$ and $\tilde{\sigma}\left(X+S_{1}\right)$ is a locator polynomial with syndrome s and the degree \tilde{w} of $\tilde{\sigma}\left(X+S_{1}\right)$ equals w. Thus $\tilde{\sigma}\left(X+S_{1}\right)$ is an error locator polynomial with syndrome s.

Corollary 1.6 No orphan has weight 4.
Proof Let $\sigma(X)$ be an error locator polynomial of weight 4 coset $C(s)$ with coset leader $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ with syndrome $s=\left(S_{1}, S_{3}, S_{5}\right), S_{1} \neq 0$. By Theorem 1.5, an error locator polynomial $\tilde{\sigma}(X)$ of the transform $C(t)$ of $C(s)$ is $\tilde{\sigma}(X)=\sigma(X)\left(X+S_{1}\right)$. This means that $\left\{S_{1}, A_{1}, A_{2}, A_{3}, A_{4}\right\}$ is a coset leader of $C(t)$, and $C(t)$ is a parent of $C(s)$. Thus a coset of weight 4 is not orphan.

Theorem 1.7 All reduced cosets of weight 3 are orphans. Furthermore, such cosets have exactly $(n-3) / 4$ weight 4 vectors.

Proof Let $C(t)$ be a reduced coset of weight 3 with coset leader $A=\left\{A_{1}, A_{2}, A_{3}\right\}$. For any nonzero $L \in G F\left(2^{m}\right), L \neq A_{i}, i=1,2,3, \bar{L}=\left\{L, L+A_{1}, L+A_{2}, L+A_{3}\right\}$ is a weight 4 vector in $C(t)$. Since distance is $7, A$ and \bar{L} are disjoint. Hence A and weight 4 vectors of $C(t)$ cover all coordinate positions. Therefor, any two distinct weight 4 vectors are also disjoint, so there are exactly $(n-3) / 4$ weight 4 vectors of $C(t)$.

We define the trace mapping from $G F\left(2^{m}\right)$ to $G F(2)$ by

$$
\operatorname{Tr}(A)=A+A^{2}+\cdots+A^{2 m-1}, A \in G F\left(2^{m}\right)
$$

The following lemma shows the properties of trace mappings which can be found in [8]F. J. MacWilliams and N. J. A. Solane.

Lemma 1.8 The followings hold:
(i) Exactly half of the elements A in $G F\left(2^{m}\right)$ have $\operatorname{Tr}(A)=0$ and exactly half have $\operatorname{Tr}(A)=1$.
(ii) $\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B), A, B \in G F\left(2^{m}\right)$.
(iii) $\operatorname{Tr}\left(A^{2^{i}}\right)=\operatorname{Tr}(A), i=1, \cdots, m-1$.

We next obtain sufficient conditions for a weight 3 coset not to be an orphan by using the trace mapping. [4]E. R. Berlekamp, H. Rumssey and G. Solomon characterized quadratic equations over fields of characteristic two which have roots and we record their result in the next lemma.

Lemma 1.9 The quadratic equation, $X^{2}+A X+B=0, A, B \in G F\left(2^{m}\right), A \neq 0$, has solutions in $G F\left(2^{m}\right)$ if and only if $\operatorname{Tr}\left(B / A^{2}\right)=0$.

Lemma 1.10 Any reduced coset with syndrome $\left(0,0, T_{5}\right), T_{5} \neq 0$ has weight 5 .
Proof Let $C(t)$ has syndrome $t, t=\left(0,0, T_{5}\right)$. Since $T_{1}=0, C(t)$ has weight 3 or 5 by Theorem 1.4. Assume that $C(t)$ has weight 3 and let $\tilde{\sigma}(X)=X^{3}+\sigma_{1} X^{2}+\sigma_{2} X+\sigma_{3}$ be the error locator polynomial of $C(t)$. we have $\sigma_{1}=T_{1}=0$ and $\sigma_{3}=T_{3}=0$. Then $\tilde{\sigma}(X)$ has zero as its root which contradicts that $\tilde{\sigma}(X)$ is a locator polynomial. Hence $C(t)$ has weight 5.

Lemma 1.11 Assume m is odd. Any reduced coset $C(t)$ with syndrome $t=$ $\left(0, T_{3}, 0\right), T_{3} \neq 0$ has weight 5 .

Proof Since $T_{1}=0, \mathrm{C}(\mathrm{t})$ has weight 3 or 5 by Theorem 1.4. Assume that $C(t)$ has weight 3 with coset leader $\left\{A_{1}, A_{2}, A_{3}\right\}$. Since $A_{1}+A_{2}+A_{3}=0,0=T_{5}=$ $T_{3}\left(A_{1} A_{2}+A_{2} A_{3}+A_{1} A_{3}\right)=T_{3}\left(A_{1}^{2}+A_{2}^{2}+A_{1} A_{2}\right)$. Since $T_{3} \neq 0, A_{1}^{2} A_{2}^{2}+A_{1} A_{2}=0$ and so A_{2} is a root of $X^{2}+A_{1} X+A_{1}^{2}=0$. By Lemma 1.8, $\operatorname{Tr}\left(A_{1}^{2} / A_{2}^{2}\right)=\operatorname{Tr}(1)=0$, contradicting to that m is odd. Hence $C(t)$ has weight 5 .

2. Main Theorems

Theorem 2.1 Let $C(t), t=\left(0, T_{3}, T_{5}\right)$ be a reduced coset of weight 3 and $C(s), s=$ $\left(S_{1}, S_{3}, S_{5}\right)$ be a unreduced coset whose transform is $C(t)$. If $\operatorname{Tr}\left(T_{3} / S_{1}^{3}\right)=0$, then $C(s)$ is not an orphan.

Proof Let $A=\left\{A_{1}, A_{2}, A_{3}\right\}$ be the coset leader of $C(s)$. Then $\left\{A_{1}+S_{1}, A_{2}+A_{1}, A_{3}+\right.$ $\left.S_{1}\right\}$ is the coset leader of $C(t)$ by Theorem 1.5. Note that $C(s)$ is not an orphan if and only if there exists a nonzero $L \in G F\left(2^{m}\right)$ such that $A^{\prime}=\left\{A_{1}, A_{2}, A_{3}, L\right\}$ is a coset leader of weight 4 coset. Since, by Lemma $1.9 \operatorname{Tr}\left(T_{3} / S_{1}^{3}\right)=0$ if and only if $X^{2}+S_{1} X+T_{3} / S_{1}=0$ has a solution, there exists a $L \in G F\left(2^{m}\right)$ such that $L S_{1}(L+$ $\left.S_{1}\right)+T_{3}=0$. If $L=0$ then $T_{3}=0$, and so $C(t)$ has weight 5 by Lemma 1.10. Hence $L \neq 0$. We now show that $L \neq A_{i}, i=1,2,3$. Assume that $L=A_{1}$. Then $A_{1} S_{1}\left(A_{1}+S_{1}\right)=T_{3}=\left(A_{1}+S_{1}\right)^{3}+\left(A_{2}+S_{1}\right)^{3}+\left(A_{3}+S_{1}\right)^{3}=\left(A_{1}+S_{1}\right)\left(A_{2}+\right.$ $\left.S_{1}\right)\left(A_{3}+S_{1}\right)=\left(A_{1} S_{1}+A_{1} A_{2}\right)\left(A_{1}+S_{1}\right)$ implies $A_{2} A_{3}=0$, contradicting A has
weight 3. Thus $A^{\prime}=\left\{A_{1}, A_{2}, A_{3}, L\right\}$ is a weight 4 vector of some $\operatorname{coset} C\left(s^{\prime}\right)$, where $s^{\prime}=\left(S_{1}+L, S_{3}+L^{3}, S_{5}+L^{5}\right)$. Then the transform $C\left(t^{\prime}\right)$ of $C\left(s^{\prime}\right)$, has syndrome $\left(0, T_{3}+L S_{1}\left(L+S_{1}\right), T_{5}+L S_{1}\left(L^{3}+S_{1}^{3}\right)\right)$. Since $T_{3}+L S_{1}\left(L+S_{1}\right)=0$, the coset weight of $C\left(t^{\prime}\right)$, $t^{\prime}=\left(0,0, T_{5}+L S_{1}\left(L^{3}+S_{1}^{3}\right)\right)$ is 5 by Lemma 1.10. Hence $C\left(s^{\prime}\right)$ has weight 4 by Theorem 1.5. Thus the weight 4 vector A^{\prime} is a coset leader of $C\left(s^{\prime}\right)$, and hence $C\left(s^{\prime}\right)$ is a parent of $C(s)$. Therefore $C(s)$ is not an orphan.

Theorem 2.2 Assume m is odd. Let $C(t), t=\left(0, T_{3}, T_{5}\right)$ be a reduced coset of weight 3. There exists $(n-7) / 2$ weight 3 unreduced cosets whose transform is $C(t)$, and they are not orphans. Furthermore, there are at least $n(n-1)(n-7) / 12$ weight 3 cosets which are not orphans.

Proof Let $A=\left\{A_{1}, A_{2}, A_{3}\right\}$ be the coset leader of $C(t)$. By Theorem 1.5 and the uniqueness of the coset leader of $C(t)$, for any nonzero $L \in G F\left(2^{m}\right)$ with $L \neq A_{i}$, the coset $C(l), l=\left(L, T_{3}+L^{3}, T_{5}+L^{5}\right)$ has weight 3 with coset leader $\left\{A_{1}+L, A_{2}+L, A_{3}+\right.$ $L\}$ and $C(t)$ is a transform of $C(l)$. Hence we want to count L such that $\operatorname{Tr}\left(T_{3} / L^{3}\right)=0$, $L \neq 0, A_{1}, A_{2}, A_{3}$. Since m is odd, $n=2^{m}-1$ is not divisible by 3 . This means α^{3} is a primitive element whenever α is a primitive element of $G F\left(2^{m}\right)$. Thus, for the given $T_{3},\left\{T_{3} / L^{3} \mid L \in G F\left(2^{m}\right), L \neq 0\right\}$ is the set of all nonzero elements of $G F\left(2^{m}\right)$. By (i) in Lemma 1.8, there are exactly $(n-1) / 2$ nonzero L such that $\operatorname{Tr}\left(T_{3} / L^{3}\right)=0$. But,

$$
\begin{aligned}
\operatorname{Tr}\left(T_{3} / L^{3}\right) & =\operatorname{Tr}\left(\left(A_{1}^{3}+A_{2}^{3}+A_{3}^{3}\right) / A_{1}^{3}\right)=\operatorname{Tr}\left(A_{1} A_{2} A_{3} / A_{1}^{3}\right) \\
& =\operatorname{Tr}\left(\left(A_{3}^{2}+A_{1} A_{3}\right) / A_{1}^{2}\right)=\operatorname{Tr}\left(\left(A_{3} / A_{1}\right)^{2}+\operatorname{Tr}\left(A_{3} / A_{1}\right)\right. \\
& =\operatorname{Tr}\left(A_{3} / A_{1}\right)+\operatorname{Tr}\left(A_{3} / A_{1}\right)=0
\end{aligned}
$$

using $A_{1}+A_{2}+A_{3}=0$ and (ii), (iii) in Lemma 1.8. We conclude that if $L=$ $A_{i}, i=1,2,3$ then $\operatorname{Tr}\left(T_{3} / L^{3}\right)=0$, but coset $C(l), l=\left(L, T_{3}+L^{3}, T_{5}+L^{5}\right)$ does not have weight 3 . Therefore there are $(n+1) / 2-4=(n-7) / 2$ weitght 3 unreduced cosets whose transform is $C(t)$ and they are not orphans by Theorem 2.1. We now count the number of weight 3 reduced cosets with syndrome ($0, T_{3}, *$) for some fixed $T_{3} \in G F\left(2^{m}\right)$ and arbitrary $* \in G F\left(2^{m}\right)$. This is equivalent to counting the number of coset leaders of these cosets since each coset has only one coset leader. Let $C(t)$ be a weight 3 reduced coset with syndrome $\left(0, T_{3}, *\right)$ and let $\left\{A_{1}, A_{2}, A_{3}\right\}$ be the coset leader of $C(t)$. Then, by Lemma 1.9, $T_{3}=A_{1}^{3}+A_{2}^{3}+A_{3}^{3}=A_{1}^{3}+A_{2}^{3}+\left(A_{1}+A_{2}\right)^{3}=$ $A_{1} A_{2}\left(A_{1}+A_{2}\right)$ (or $A_{2} A_{3}\left(A_{2}+A_{3}\right)$). Therefore
$\left\{A_{1}, A_{2}, A_{3}\right\}$ is the coset leader of a coset $C(t), t=\left(0, T_{3}, *\right)$
if and only if A_{i} is a root of $X^{2}+A_{j} X+T_{3} / A_{j}=0, i \neq j i, j=1,2,3$
if and only if $\operatorname{Tr}\left(T_{3} / A_{1}^{3}\right)=\operatorname{Tr}\left(T_{3} / A_{2}^{3}\right)=\operatorname{Tr}\left(T_{3} / A_{3}^{3}\right)=0$.
We have already noted that there are $(n-1) / 2$ nonzero $L \in G F\left(2^{m}\right)$ such that $\operatorname{Tr}\left(T_{3} / L^{3}\right)=0$, so there are $1 / 3((n-1) / 2)$ weight 3 reduced cosets with syndrome
$\left(0, T_{3}, *\right)$ for each nonzero $T_{3} \in G F\left(2^{m}\right)$. Therefore we have at least $n(1 / 3((n-$ 1)/2) ((n-7)/2) $=n(n-1)(n-7) / 12$ weight 3 unreduced cosets which are not orphans.

Theorem 2.3 Assume m is an even. There are at least $n \beta(\beta-1)+(n / 8)(n-$ $2 \beta)(n-2 \beta-5)$ weight 3 unreduced cosets which are not orphans where β is the number of nonzero elements $\alpha^{j} \in G F\left(2^{m}\right)$ such that the trace of α^{j} is zero and $j \equiv 0(\bmod 3)$.

Proof Let $C(t), t=\left(0, T_{3}, T_{5}\right)$ be a weight 3 reduced coset with coset leader $A=$ $\left\{A_{1}, A_{2}, A_{3}\right\}$. Since m is even, $n=2^{m}-1$ is divisible by 3 . So $\left\{T_{3} / L^{3} \mid L \in\right.$ $\left.G F\left(2^{m}\right), L \neq 0\right\}$ is not the set of all nonzero elements of $G F\left(2^{m}\right)$. To count the number of nonzero L such that $\operatorname{Tr}\left(T_{3} / L^{3}\right)=0$, define β to be the cardinality of Ψ where $\Psi=\left\{\alpha^{j} \in G F\left(2^{m}\right) \mid \alpha^{j} \neq 0, \operatorname{Tr}\left(\alpha^{j}\right)=0, j \equiv 0(\bmod 3)\right\}$. Let $T_{3}=\alpha^{j}$ for some j. We separate the remainder of the proof into two cases according to whether j is divisible by 3 or not.

Case 1: Let $T_{3}=\alpha^{3} k$, for some k. Then if $T_{3} / L^{3}=R$ for some $R \in \Psi$, then $T_{3} /\left(L \alpha^{n / 3}\right)^{3}=T_{3} /\left(L \alpha^{2 n / 3}\right)^{3}=R$ and $L \in G F\left(2^{m}\right)$. Hence, by the same argument in Theorem 2.2, there exist 3β nonzero L such that $\operatorname{Tr}\left(T_{3} / L^{3}\right)=0$, and we have $3 \beta-3$ weight 3 unreduced cosets whose transform is $C(t)$ and by Theorem 2.1 they are not orphans. Also we have β weight 3 reduced cosets with syndrome $\left(0, T_{3}, *\right)$ for some fixed $T_{3} \in G F\left(2^{m}\right)$, and there are $n / 3$ nonzero elements of $G F\left(2^{m}\right), T_{3}=\alpha^{3 k}$ for some k. This means that there are at least $(n / 3)(\beta)(3 \beta-3)=n \beta(\beta-1)$ weight 3 cosets which are not orphans.

Case 2 : Let $T_{3}=\alpha^{k}, k=1,2(\bmod 3)$. Exactly half of the elements in $G F\left(2^{m}\right)$ have trace zero, so we have $(n-1) / 2-\beta=1 / 2(n-1-2 \beta)$ nonzero $R=\alpha^{j}$ such that $\operatorname{Tr}(R)=0, j$ is not divisible by 3 . Note if $j \equiv 1(\bmod 3)$, then $2 j \equiv 2(\bmod 3)$. Thus, there are $(n-1-2 \beta) / 4 R$ such that $\operatorname{Tr}(R)=0, j \equiv 1$ or $2(\bmod 3)$ respectively. Since there exists $L \in G F\left(2^{m}\right)$ such that $T_{3} / L^{3}=R \in \Psi$ if and only if $k \equiv j(\bmod 3)$, there are weight 3 unreduced cosets whose transform is $C(t)$ and $((n-1-2 \beta) / 4)-3$ weight 3 reduced cosets with syndrome $\left(0, T_{3}, *\right)$ for some fixed nonzero $T_{3} \in G F\left(2^{m}\right)$. Therefore we have at least $2[(n / 3)((n-1-2 \beta) / 4)((3(n-1-2 \beta)-12) / 4)]=(n / 8)(n-$ $1-2 \beta)(n-5-2 \beta)$ weight 3 unreduced cosets which are not orphans.

From Case 1 and Case 2, there are at least $n \beta(\beta-1)+(n / 8)(n-2 \beta-1)(n-2 \beta-5)$ weight 3 unreduced cosets which are not orphans.

Theorem 2.4 Assume that m is odd. Let $C(t), t=\left(0, T_{3}, T_{5}\right)$ be a reduced coset of weight 3 and $C(s), s=\left(S_{1}, S_{3}, S_{5}\right)$ be an unreduced coset whose transform is $C(t)$. If $\operatorname{Tr}\left(T_{5} / S_{1}^{5}\right)=0$, then $C(s)$ is not an orphan.

Proof Let $\left\{A_{1}, A_{2}, A_{3}\right\}$ be the coset leader of $C(t)$. Then $\left\{A_{1}+S_{1}, A_{2}+S_{1}, A_{3}+S_{1}\right\}$ is the coset leader of $C(s)$. Since $\operatorname{Tr}\left(T_{5} / S_{1}^{5}\right)=0$, by Lemma 1.9, $X^{2}+S_{1}^{2} X+T_{5} / S_{1}=0$ has roots $P, Q \in G F\left(2^{m}\right)$ such that $P+Q=S_{1}^{2}$ and $P Q=T_{5} / S_{1}$. Therefore $X^{4}+S_{1}^{3} X+T_{5} / S_{1}=\left(X^{2}+S_{1} X+P\right)\left(X^{2}+S_{1} X+Q\right)(* 3)$ for $P, Q \in G F\left(2^{m}\right)$. Since
$P+Q+=S_{1}^{2}, \operatorname{Tr}\left(P / S_{1}^{2}\right)+\operatorname{Tr}\left(Q / S_{1}^{2}\right)=\operatorname{Tr}(1)=1$. Thus only one of $\operatorname{Tr}\left(P / S_{1}^{2}\right)$ and $\operatorname{Tr}\left(Q / S_{1}^{2}\right)$, say $\operatorname{Tr}\left(P / S_{1}^{2}\right)$, equals to zero. By Lemma 1.9, there exists $L \in G F\left(2^{m}\right)$ such that L is a root of $X^{2}+S_{1} X+P=0$. From (*3), L is a root of $X^{4}+S_{1}^{3} X+T_{5} / S_{1}=0$, and so $S_{1} L^{4}+S_{1}^{4} L=S_{1}^{5}+L^{5}+\left(S_{1}+L\right)^{5}=T_{5}$. Hence $\left\{S_{1}, L, S_{1}+L\right\}$ is coset leader of weight 3 reduced coset $C(p)$ with syndrome ($0, P, T_{5}$) where $P=S_{1} L\left(S_{1}+L\right)$. By Lemma 1.10, a coset $C\left(p^{\prime}\right)=C(t)+C(p)$ with syndrome $\left(0, T_{3}+P, 0\right)$ has weight 5 . Now $\bar{A}=\left\{A_{1}, A_{2}, A_{3}, S_{1}, L, S_{1}+L\right\}$ is a vector of $C\left(p^{\prime}\right)$ has a vector of weight less than 5 , contradicting to that $C\left(p^{\prime}\right)$ has weight 5 . This \bar{A} is a vector in $C\left(p^{\prime}\right)$ of weight 6. Thus $\left\{A_{1}+S_{1}, A_{2}+S_{1}, A_{3}+S_{1}, L, L+S_{1}\right\}$ is a weight 5 vector in $C\left(p^{\prime}\right)$ and is a coset leader. Since any descendent of coset leader is also coset leader of some coset, $\left\{A_{1}+S_{1}, A_{2}+S_{1}, A_{3}+S_{1}, L\right\}$ is a coset leader of some coset which is a parent of $C(s)$. Therefore $C(s)$ is not an orphan.

We have shown that many weight 3 unreduced cosets are not orphans. We conjecture that all weight 3 unreduced cosets are not orphans. We prove that this conjecture for $m=4$ and 5 .

Lemma 2.5 Let $C(s)$, $s=\left(S_{1}, S_{3}, S_{5}\right)$ be a weight 3 unreduced coset. For each weight 4 vector $A=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ of $C(s)$ with $A_{i} \neq S_{1}, i=1, \cdots, 4$, we have $\bar{A}=\left\{A_{1}+S_{1}, A_{2}+S_{1}, A_{3}+S_{1}, A_{4}+S_{1}\right\}$ is also a weight 4 vector of $C(s)$.

Proof Since the A_{i} are distinct nonzero elements different from S_{1}, the elements $A_{i}+$ S_{1} are nonzero and distinct. We calculate $\sum_{i=1}^{4}\left(A_{i}+S_{1}\right)^{j}=\sum_{i=1}^{4} A_{i}^{j}+S_{1}\left(\sum\left(A_{i}\right)^{j-1}\right)+$ $S_{1}^{j-1}\left(\sum A_{i}\right)+\sum S_{1}^{j}=\sum A_{i}^{j}$, since $\sum A_{i}^{j-1}=S_{1}^{j-1}, j=1,3,5$.

Corollary 2.6 Any weight 4 coset $C(s)$ has at least two coset leaders.
Lemma 2.7 A locator polynomial of a weight 4 vector of the weight 3 unreduced coset $C(s)$ and a locator polynomial of weight 4 vector of the transform $C(t)$ of $C(s)$ have at most one common root.

Proof Let $Q=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}$ and $P=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ be weight 4 vectors in $C(s)$ and $C(t)$ respectively. Without loss of generality, assume that $Q_{1}=P_{1}$ and $Q_{2}=P_{2}$. We claim that $\left\{Q_{3}, Q_{4}, P_{3}, P_{4}\right\} \in C\left(s^{\prime}\right), s^{\prime}=\left(S_{1}, S_{1}^{3}, S_{1}^{5}\right)$, a coset of weight 1. This follows since $Q_{3}^{j}+Q_{4}^{j}=S_{j}+Q_{1}^{j}+Q_{2}^{j}=S_{j}+P_{1}^{j}+P_{2}^{j}=S_{j}+T_{j}+P_{3}^{j}+P_{4}^{j}=$ $S_{1}^{j}+P_{3}^{j}+P_{4}^{j}, j=1,3,5$. Therefore $\left\{S_{1}, Q_{3}, Q_{4}, P_{3} P_{4}\right\}$ is a codeword, contradicting the fact that the minimum distance of $\operatorname{BCH}(3, m)$ is 7 .

Lemma 2.8 Suppose that the locator polynomial $\sigma(X)$ of weight 4 vector of weight 3 unreduced coset $C(s)$ has one common root with the locator polynomial $\tilde{\sigma}(X)$ of weight 4 vector of its transform $C(t)$. If S_{1} is neither a root of $\sigma(X)$ nor $\tilde{\sigma}(X)$, then $\tilde{\sigma}(X)$ cannot have a common root with $\sigma\left(X+S_{1}\right)$, where $\sigma\left(X+S_{1}\right)$ is also a locator polynomial of weight 4 vector of $C(s)$.

Proof Let $A=\left\{A_{1}, A_{2}, A_{3}\right\}$ be a coset leader of $C(t)$, and let $P=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ and $Q=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}$ be weight 4 vectors of $C(t)$ abd $C(s)$ respectively. Suppose that the locator polynomial $\tilde{\sigma}(X)$ of P has one common root with the locator polynomial $\sigma(X)$ of Q, say $P_{1}=Q_{1}$. We can say that P is of the form $P_{i+1}=$ $P_{1}+A_{i}, i=1,2,3$ since $\left\{P_{1}, P_{1}+A_{1}, P_{1}+A_{2}, P_{3}+A_{3}\right\}$ is a weight 4 vector of $C(t)$ and any two distinct weight 4 vectors are disjoint. By Lemma 2.5 and $Q_{i} \neq 0, \bar{Q}=$ $\left\{Q_{1}+S_{1}, Q_{2}+S_{1}, Q_{3}+S_{1}, Q_{4}+S_{1}\right\}$ is a weight 4 vector of $C(s)$ and $\sigma\left(X+S_{1}\right)$ is the locator polynomial of \bar{Q}. So suppose that P and \bar{Q} have a common nonzero position. If $P_{1}=Q_{i}+S_{1}$ for some i, then $Q_{1}+Q_{i}=S_{1}$, since $P_{1}=Q_{1}$. This contradicts the fact that the weight of Q is 4 . Without loss of generality, assume that $P_{2}=Q_{2}+S_{1}$. Then $Q_{2}+S_{1}=P_{2}=P_{1}+A_{1}=Q_{1}+A_{1}, Q_{1}+Q_{2}+S_{1}=Q_{3}+Q_{4}=A_{1}$. So we have $Q_{3}=Q_{4}+A_{1}$. Hence $\left\{Q_{4}, Q_{4}+A_{1}, Q_{4}+A_{2}, Q_{4}+A_{3}\right\}=\left\{Q_{4}, Q_{3}, Q_{4}+A_{2}, Q_{4}+A_{3}\right\}$ is weight 4 vector in $C(t)$ which has two common nonzero positions with Q, contradicting Lemma 2.7. Hence P cannot have a common nonzero position with Q.

Theorem 2.9 No weight 3 unreduced coset is an orphan for $m=4$ and 5 .
Proof Let $C(s)$ be weight 3 coset and let $C(t)$ be its transform with coset leader $A=\left\{A_{1}, A_{2}, A_{3}\right\}$. Then $\left\{S_{1}, A_{1}, A_{2}, A_{3}\right\}$ is a weight 4 vector of $C(s)$ since $S_{1} \neq 0, A_{i}$. We claim that this is the only weight 4 vector of $C(s)$. To get a contradiction, assume that $Q=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}, Q_{i} \neq S_{1}, A_{j} i=1, \cdots, 4 ; j=1,2,3$ is another weight 4 vector of $C(s)$. Then $\bar{Q}=\left\{Q_{1}+S_{1}, Q_{2}+S_{1}, Q_{3}+S_{1}, Q_{4}+S_{1}\right\}$ is also weight 4 vector of $C(s)$ by Lemma 2.5. Define $P(i)=\left\{Q_{i}, Q_{i}+A_{1}, Q_{i}+A_{2}, Q_{i}+A_{3}\right\}$ and $\bar{P}(i)=\left\{Q_{i}+S_{1}, Q_{i}+S_{1}+A_{1}, Q_{i}+S_{1}+A_{2}, Q_{i}+S_{1}+A_{3}\right\}$ for $i=1, \cdots, 4$. Then $P(i)$ and $\bar{P}(i)$ are weight 4 vectors of $C(t)$. It is sufficient to show that these 8 weight 4 vectors are distinct since $C(t)$ has only $(n-3) / 4<8,(m=4,5)$ weight 4 vectors by Theorem 1.7. If $P(i)=P(j), i \neq j$ then we have $Q_{i}=Q_{j}+A_{k}$ for some k, so the locator polynomial of $P(j)$ has two common roots with locator polynomial of Q, contradicting Lemma 2.7. Thus we have $P(i) \neq P(j)$, and $\bar{P}(i) \neq \bar{P}(j)$ for $i \neq j$. If $P(i)=\bar{P}(i)$ then $A_{i}=S_{1}$, contradicting $C(s)$ has weight 3 . Now assume that $P(i)=\bar{P}(j), i \neq j$, say $i=1, j=2$. Then $Q_{1}=Q_{2}+S_{1}+A_{k}$ for some k. This implies $Q_{3}=Q_{4}+A_{k}$, so the locator polynomial of $P(4)$ has two common roots with Q contradicting Lemma 2.7. Thus all these weight 4 vectors are distinct, contradicting Theorem 1.7. Hence $C(s)$ has only one weight 4 vector and so is not an orphan by Theorem 1.1.

References

[1] E. F. Assmus, Jr. and H. F. Mattson, Jr.[1976], Some three-error correcting BCH codes haxe covering radius 5,IEEE Trans. Inform. Theory, vol IT-22, 348-349.
[2] T. Berger and J. A. Van der Horst1976], Complete decoding of triple-error correcting binary BCH codes. IEEE Trans. Inform. Theory, vol IT-22, 138-147.
[3] E. R. Berkamp1968], Algebrac coding Theory, McGraw-Hill, New York.
[4] E. R. Berkamp, H. Rumsy and G. Solomon1967], On the solution of algebrac equations over finite fields, information and Control, 10, 553-564.
[5] T. Helleseth[1973], All binary 3-error correcting BCH codes oh length - 1 have coverimg radius 5, IEEE Trans. Inform. Theory, vol It-19, 344-356.
[6] T. Helleseth[1985], On the covering radius of cyclic linear codes and arithmetic codes, Discrete Appl. Math., 11, 157-173.
[7] F. J. MacWilliams and N. j. A. sloane[1977], The theory of Error-Correcting Codes, New York: North Holland.
[8] A. Tieta" va"inen[1987], On the covering radius of long binary BCH codes. Discrete Appl. Math., 16, 75-77.

Division of Information and Management Science,
College of Information and Science,
Pusan University of Foreign Studies,
55-1, Uam-Dong, Nam-Gu, Busan
email: gshwang@ taejo.pufs.ac.kr
Classification number C020705

[^0]: Key words and phrases. orphan, reduced coset, unreduced coset.

