J. KSIAM Vol.6, No.1, 109-119, 2002

THE ORPHAN STRUCTURE OF BCH(3,m) CODE

GEUM-SUG HWANG

Abstract
If C is a code, an orphan is a coset without any parent. We investigate the structure
of orphans of the code BCH (3, m). All weight 5 cosets and all weight 3 reduced cosets
are orphans, and all weight 1,2 and 4 are not orphans. We conjecture that all weight
3 unreduced cosets are not orphans. We prove this conjecture for m =4, 5.

1. Introduction

An [n, k] code C over Fy is a k-dimensional subspace of the n-tuple space GF(¢").
An [n, k| code C can be specified by k linearly independent vectors in C. A k by n
matrix G' over Fj; whose rows forms a basis of C' is called generator matriz of C' and
C={x =uG | u= (u,ug,- - ,u), u; € Fy} (x1). Also C can be specified by
n — k linearly independent homogeneous equations. A n — k by n matrix H such that
C = {(z1,22, -+ ,x,) | Hz' =0, z; € F;} (x2) is called parity check matriz for C.
(1) and (x2) together imply that G and H are related by GH' =0 and HG' = 0. A
coset of a code C'is the set a+C = {a+xz | x € C} for any vector a. Each vector b is in
some coset and each coset contains ¢* vectors. For a vector b, s = Hbt is the syndrome
of b where s is a column vector of length n — k. Two vectors are in same coset if and
only if Ha' = Hb'. Hence there are one to one correspondence between syndromes
and cosets. A minimum weight vector in a coset is called a coset leader and the coset
weight is the weight of a coset leader. The cosets of C' are partially ordered by defining
for two cosets C’ and C” of C, C’' < C" provided there is a coset leader z’ of C’ and
a coset leader z” of C” such that 2’ < z”’. Here for the vectors 2’ = (2,2}, -+ ,2}))

n

and " = (24, --- ,zll), ' < 2" means that z/ # 0 whenever z/ # 0. The coset C’

is a child of C"”, and C"” is a parent of C’, provided C’ < C” and there is no coset D
with C’ < D < C”. An orphan is a coset without any parent.
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Let BCH (t,m) denote the binary Bose-Chaudhuri-Hocquenghem code of primitive
length n = 2™ — 1 and design distance § = 2t 4+ 1. We investigate the orphan structure
of the code BCH(3,m) code. The BCH (3, m) code, m > 4, is the null space of the 3
by n matrix H over GF(2™) given by

1 o o> --- a1
H=11 a3 af ... 31
1 ab alO . a5(n71)

where « is a primitive element of GF'(2™). The syndrome s of a received word r =
(ro,71,+ ,Tp—1) is s = Hr' = (51,55,55), S; € GF(2™). The cosets are the set
C(s) = {r : Hr' = s}. Given an arbitrary binary n-tuple a = (ag, a1, - ,a,_1) of
weight w, the locator polynomial of a is the polynomial of degree w defined by

oX)= J] X+a)=X+01 X"+ +o,.
{i:a;#0}

The roots of the locator polynomial of a indicate the coordinate positions which are
1 in a. There is a one to one correspondence between binary n-tuples and locator
polynomials. A locator polynomial o(X) = [];_,(X + A;) of degree w is called an
error locator polynomial with syndrome s provided it is the locator polynomial of a
coset leader of a coset C(s), s = (51,53,55) of weight w. This implies that S; =
S Al j =1,3,5. We give the relation between the coefficients o; of the locator
polynomial o(X) and the components S; of its syndrome, namely S; = o1, S3 =
015’% + 0951 + 03 and S5 = 0’1Si1 + 0953 + UgS% + 0451 + 05.

We define the syndrome (77,73,7T5) to be reduced provided that T3 = 0. A coset
with reduced syndorme is called a reduced coset and a coset with 717 # 0 is called an
unreduced coset. The transform of C(s), s = (S1,53,55) is the reduced coset C(t) with
syndrome t, t = (Ty,T3,T5) = (0, S5+ S, S5+ S7). Note that two different cosets can
have the same transform. Any coset C(s) of weight 1 has syndrome s = (51, S}, S?),
and so its transform is the code C(0). Hence if ¢ # 0 then C(s) has weight > 1. The
covering radius of a code is the largest weight of orphan. The existence of orphans of
weight less than covering radius complicates the determination of the covering radius
of a code. Let’s start with the following characterization of orphan given by R. A.
Brualdi and V. S. Pless.

Theorem 1.1 Let C’ be a coset of C with weight w. Then C’ is an orphan if and
only if the vectors of C' with weights w and w + 1 cover all coordinate positions.

Proof We first note that each parent of C’ is of the form e; +C" for some unit vector
e;, 1 <i < n. If the vectors of weight w and w+ 1 of C” cover all coordinate positions,
then the weight of e; + C” is either w — 1 or w and hence e; + C’ cannot be a parent
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of C’. Now suppose that C’ is an orphan. If there is a coordinate position j which is
not coverd by any vector of weight w or w + 1 of C’, then e; + C’ contains a vector
of weight w + 1 but contains no vectors of weight w, and it follows that e; + C’ is a
parent of C’.

Let a coset C’ of a code C of distance d have weight w, w < |(d —1)/2]. If there
are two vectors u, v in C’ of weight w or w + 1, then the vector u + v is a codeword
and its weight is less than d, contradicting the distance of C' is d. Hence such a coset
C’ cannot be an orphan by theorem 1.1.

Since the distance of BCH (3, m) is 7, all cosets of weight 1 and 2 are not orphans.
Since the maximal coset weight of BC'H (3, m) is 5, it is trivial that all cosets of weight
5 are orphans. Hence it remains only to investigate cosets of weight 3 and 4. We note
that a coset of weight 3 has a unique coset leader. We now use the notation o (X) to
denote a locator polynomial of degree k.

Lemma 1.2 Let 09,1 (X) = H?i;l(X + A;), k > 1, be the locator polynomial
of a vector of a reduced coset C(t). If Logi_1(L) # 0 for some L € GF(2™), then
(X+L)ook—1(X+L) is a locator polynomial of degree 2k with syndrome t. Conversely,
if o9k (X) is any even degree locator polynomial with syndrome t and L is one of its
roots, then oo (X + L)/ X is a locator polynomial of degree 2k — 1 with syndrome t.

Proof Since og_1(X) is a locator polynomial, its roots A;, i = 1,---,2k — 1 are
distinct nonzero elements of GF'(2™). It follows from the condition Loa,_1(L) # 0 that
L and A; + L are also distinct and nonzero so that oax(X) = (X + L)ogg—1(X + L)
is also locator polynomial. To show that o9,(X) has syndrome t it suffices to show
that L7 + Zfﬁ;l(Al + L) = Z?i;l Al j=1,3,5. Since Zfi;l A; =0, we also have
SN A2=0and Y. A} =0. Hence L+ Y (A; +L) =Y A;=0and LV + Y (A; + L) =
> Al by expanding (A; + L)?, j = 3,5.

Conversely suppose that L is one of the roots of an even degree locator polynomial
ook (X). Let Aj,---,Agg be the roots of o9r(X) and assume L = A;. Since all
A;, i = 1,---,2k are nonzero and distinct, L + A; = A; + A; are also distinct and
nonzero. Hence oo;(X + L)/X is a locator polynomial of degree 2k — 1. Since L’ +

S (A =0, j=1,2,4

2k

DALY = (AY LY (AP H+LDTH A+ L

=2
=3 (A + LU + DL
=Y (Ai), j=1,3,5.

Thus o9, (X + L)/X also has syndrome t.
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Henceforth we denote a binary n- tuple A of weight w with 1’s in positions i1, 42, - , iy
by A= {Al,AQ,- .. 7Aw} = {Oﬂl’alz’... 70(7%.1}‘

Corollary 1.3 Any weight 4 vector of weight 3 reduced coset C(t) has the form
{L,Ay + L,Ay + L, A3 + L} for some L € GF(2™), L # 0, A;, i = 1,2,3 where
{A1, Aa, A3} is the unique coset leader of C(t).

Proof Let o3(X) = H?Zl(X + A;) be the error locator polynomial of C'(¢). For any
nonzero L € GF(2™),if L # A;, i =1,2,3 then Los(L) # 0. Hence (X + L)os(X + L)
is locator polynomial of degree 4 with syndrome ¢ by Lemma 1.2. This implies that
{L,A1+L,As+L,As+L} is a weight 4 vector of C(¢). Since the distance of BCH (3, m)
is 7, any two distinct locator polynomials of degree 4 with syndrome ¢ have no common
root. From the converse part of Lemma 1.2 and uniqueness of the coset leader of C(t),
any weight 4 vector of C(t) has this form.

Theorem 1.4 The weight & of a reduced coset C(t) is either zero or an odd integer
> 3.

Proof Because any coset of weight 1 has syndrome s = (S1,55,57), S1 # 0, w
cannot be one. Assume that @ is positive and even, say w = 2k. Let o2, (X) be
an error locator polynomial with syndrome ¢, and let L be a root of o9 (X). Define
02k-1(X) = 02, (X + L)/X. Then o9;_1(X) is a locator polynomial with syndrome ¢
by Lemma 1.2, contradicting w is the weight of C(t).

We get the relation between error locator polynomial of coset C(s) and that of its
transform C(t) from the next theorem which is in [2]T. Berger and V. A. Van Der
Horst. Henceforth we denote a binary n-tuple A of weight w with 1’s in positions
i1,02,+ ,iy by A ={A1,Aq, -+, Ay} = {a,a®, .-+ a'}. Two vectors are disjoint
provided their locator polynomials have no common roots.

Theorem 1.5 Let C(s), s = (51,953,55) be a coset of weight w > 1. Then an
error locator polynomial o(X) with syndrome s can be obtained from an error locator
polynomial 6(X) of its transform by

a(X), if S1=0
o(X)=< a(X)/(X+51), if S1#0, w even
o(X +51), if S1#0, w odd.

Proof If S1 =0, then t = s and o(X) = 6(X), so we need only consider S; # 0.

Case 1 : w is even. By Theorem 1.4, © equals either w — 1 or w + 1. Assume that
@ = w — 1. Then 6(S57) cannot equal zero because that implies 6(X)/(X + S1) is a
locator polynomial of degree @ — 1 = w — 2 with syndrome s, thereby contracting C'(s)
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has weight w. Thus 6(X + S7) has distinct nonzero roots and is a locator polynomial.
Therefore (X + S1) has weight @ = w — 1 with syndrome s because we have

(it 51 = 31+ SIS + ST A + 38
i=1
:Tj_|_S{7 7=1,3,5

since (3- A;)771 =3 A; = 0 where A;, i = 1,--- ,w are roots of 6(X). This contra-
dicts that C(s) has weight w, so @ = w + 1. It follows that o(S1) # 0. Otherwise,
o(X)/(X +51) is a locator polynomial with syndrome ¢ and degree w — 1, which would
contradict that C(¢) has weight @ = w + 1. Since we now know that ¢(S;) # 0 and
w=w+1, 6(X) = (X + S1)0(X) is an locator polynomial with syndrome ¢, or
o(X) =a(X)/(X +51).

Case 2 : w is odd. By Theorem 1.4, w = w and (X + S7) is a locator polynomial
with syndrome s and the degree w of 6(X + 57) equals w. Thus 6(X +57) is an error
locator polynomial with syndrome s.

Corollary 1.6 No orphan has weight 4.

Proof Let o(X) be an error locator polynomial of weight 4 coset C'(s) with coset
leader {A;, As, A3, Ay} with syndrome s = (S, S5,S55), S1 # 0. By Theorem 1.5, an
error locator polynomial 6(X) of the transform C(t) of C(s) is 6(X) = o(X)(X + S1).
This means that {S1, A1, A2, Az, A4} is a coset leader of C(t), and C(t) is a parent of
C(s). Thus a coset of weight 4 is not orphan.

Theorem 1.7 All reduced cosets of weight 3 are orphans. Furthermore, such cosets
have exactly (n — 3)/4 weight 4 vectors.

Proof Let C(t) be a reduced coset of weight 3 with coset leader A = {A;, A, A3}.
For any nonzero L € GF(2™), L# A;, i =1,2,3, L={L, L+ A, L+ Ay, L+ A3} isa
weight 4 vector in C(t). Since distance is 7, A and L are disjoint. Hence A and weight
4 vectors of C(t) cover all coordinate positions. Therefor, any two distinct weight 4
vectors are also disjoint, so there are exactly (n — 3)/4 weight 4 vectors of C(t).

We define the trace mapping from GF(2™) to GF(2) by
Tr(A)=A+ A%+ ...+ A*™ 1 A e GF(2™).

The following lemma shows the properties of trace mappings which can be found in
[8]F. J. MacWilliams and N. J. A. Solane.

Lemma 1.8 The followings hold:
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(i) Ezactly half of the elements A in GF(2™) have Tr(A) = 0 and exactly half have
Tr(A) =1.

(i) Tr(A+ B) =Tr(A)+Tr(B), A,B € GF(2™).

(iii) Tr(A%) =Tr(A), i=1,--- ,m— 1.

We next obtain sufficient conditions for a weight 3 coset not to be an orphan by using
the trace mapping. [4]E. R. Berlekamp, H. Rumssey and G. Solomon characterized
quadratic equations over fields of characteristic two which have roots and we record
their result in the next lemma.

Lemma 1.9 The quadratic equation, X?> + AX + B =0, A,B € GF(2™), A #0,
has solutions in GF(2™) if and only if Tr(B/A%) = 0.

Lemma 1.10 Any reduced coset with syndrome (0,0,T5), Ts # 0 has weight 5.

Proof Let C(t) has syndrome ¢, t = (0,0,75). Since T1 = 0, C(t) has weight 3 or 5
by Theorem 1.4. Assume that C(t) has weight 3 and let 6(X) = X3+ 01 X%+ 02X 403
be the error locator polynomial of C'(t). we have 09 =T} =0 and o3 = T5 = 0. Then

&(X) has zero as its root which contradicts that &(X) is a locator polynomial. Hence
C(t) has weight 5.

Lemma 1.11 Assume m is odd. Any reduced coset C(t) with syndrome t =
(0,73,0), T3 # 0 has weight 5.

Proof Since T} = 0, C(t) has weight 3 or 5 by Theorem 1.4. Assume that C(t)
has weight 3 with coset leader {41, A2, A3}. Since A3 + As + A3 =0, 0 = T =
T3(A1A2 + Ay A3 + A1A3) = Tg(A% + A% + AlAg). Since T3 # 0, A%A% + A145 =0
and so Aj is a root of X2 + A; X + A? = 0. By Lemma 1.8, Tr(A%/A2) = Tr(1) =0,
contradicting to that m is odd. Hence C(t) has weight 5.

2. Main Theorems

Theorem 2.1 Let C(t), t = (0,15,T5) be a reduced coset of weight 3 and C(s), s =
(S1,Ss,S5) be a unreduced coset whose transform is C(t). If Tr(Ts/S}) = 0, then C(s)
s not an orphan.

Proof Let A = {A;, As, A3} be the coset leader of C'(s). Then {A;+S57, Ao+ A7, As+
S1} is the coset leader of C(t) by Theorem 1.5. Note that C(s) is not an orphan if
and only if there exists a nonzero L € GF(2™) such that A" = {A;, As, A3, L} is a
coset leader of weight 4 coset. Since, by Lemma 1.9 Tr(T5/S3) = 0 if and only if
X?% + 81X +T3/S5; =0 has a solution, there exists a L € GF(2™) such that LS; (L +
S1)+ T35 = 0. If L = 0 then T35 = 0, and so C(t) has weight 5 by Lemma 1.10.
Hence L # 0. We now show that L # A;, i = 1,2,3. Assume that L = A;. Then
A1S1(Ar + 51) =T5 = (A1 + 512 + (A2 + S1)% + (A3 + 51)° = (A1 + S1)(42 +
Sl)(Ag + Sl) = (A15’1 + AlAQ)(Al + Sl) 1mphes A2A3 = 0, contradicting A has
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weight 3. Thus A" = {A;, As, A3, L} is a weight 4 vector of some coset C(s"), where
s’ = (S1 + L,S; + L3, S5 + L?). Then the transform C(t') of C(s'), has syndrome
(0, T35+ LS1(L+S1),Ts+ LS1(L3+S3)). Since T3+ LS1(L+S1) = 0, the coset weight
of C(t'), t' = (0,0,T5 + LS;(L3 + S3)) is 5 by Lemma 1.10. Hence C(s’) has weight
4 by Theorem 1.5. Thus the weight 4 vector A’ is a coset leader of C(s’), and hence
C(s") is a parent of C(s). Therefore C(s) is not an orphan.

Theorem 2.2 Assume m is odd. Let C(t), t = (0,13,T5) be a reduced coset of
weight 3. There exists (n — 7)/2 weight 3 unreduced cosets whose transform is C(t),
and they are not orphans. Furthermore, there are at least n(n — 1)(n —7)/12 weight 3
cosets which are not orphans.

Proof Let A = {A;, A, A3} be the coset leader of C(¢). By Theorem 1.5 and the
uniqueness of the coset leader of C(t), for any nonzero L € GF(2™) with L # A;, the
coset C(1), 1 = (L, T3+ L3, Ts+ L%) has weight 3 with coset leader {Ay +L, Ay +L, A3+
L} and C(t) is a transform of C(1). Hence we want to count L such that Tr(T5/L3) = 0,
L #0,A1, Ay, A3. Since m is odd, n = 2™ — 1 is not divisible by 3. This means «o? is
a primitive element whenever « is a primitive element of GF(2""). Thus, for the given
Ty, {T3/L3 | L € GF(2™), L # 0} is the set of all nonzero elements of GF(2™). By (i)
in Lemma 1.8, there are exactly (n — 1)/2 nonzero L such that Tr(T3/L3) = 0. But,

Tr(Ts/L?) = Tr((A3 4+ A3 + A3)/A3) = Tr(A Ay A3/ A?)
= Tr((A3 + A1 A3)/AT) = Tr((As/A1)? + Tr(Az/Ar)
= T’I“(Ag/Al) + T’I“(Ag/Al) == O,

using A; + A2 + A3 = 0 and (ii), (ili) in Lemma 1.8. We conclude that if L =
A;, i =1,2,3 then Tr(T3/L3) = 0, but coset C(l), | = (L, T3 + L®,T5 + L®) does not
have weight 3. Therefore there are (n +1)/2 —4 = (n — 7)/2 weitght 3 unreduced
cosets whose transform is C'(t) and they are not orphans by Theorem 2.1. We now
count the number of weight 3 reduced cosets with syndrome (0,75, *) for some fixed
T3 € GF(2™) and arbitrary « € GF(2™). This is equivalent to counting the number
of coset leaders of these cosets since each coset has only one coset leader. Let C(t)
be a weight 3 reduced coset with syndrome (0,75, ) and let {A;, A2, A3} be the coset
leader of C(t). Then, by Lemma 1.9, T3 = A3 + A3 + A3 = A3 + A3 + (4; + Ap)3 =
A1A2 (Al + Ag) (OI‘ A2A3(A2 + Ag)) Therefore

{A1, Ay, A3} is the coset leader of a coset C(t), t = (0, T3, *)
if and only if A; is a root of X? + A; X + T3/A; =0, i #ji,j=1,2,3
if and only if Tr(T3/A3) = Tr(T3/A3) = Tr(Ts/A3) = 0.

We have already noted that there are (n — 1)/2 nonzero L € GF(2™) such that
Tr(T3/L?) = 0, so there are 1/3((n — 1)/2) weight 3 reduced cosets with syndrome
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(0,T3,%) for each nonzero T5 € GF(2™). Therefore we have at least n(1/3((n —
1)/2)((n —7)/2) = n(n — 1)(n — 7)/12 weight 3 unreduced cosets which are not or-
phans.

Theorem 2.3 Assume m is an even. There are at least n3(f — 1) + (n/8)(n —
23)(n—28—5) weight 3 unreduced cosets which are not orphans where (3 is the number
of nonzero elements o € GF(2™) such that the trace of o’ is zero and j =0 (mod 3).

Proof Let C(t), t = (0,T5,T5) be a weight 3 reduced coset with coset leader A =
{A1, Az, A3}. Since m is even, n = 2™ — 1 is divisible by 3. So { T3/L3® | L €
GF(2™), L # 0} is not the set of all nonzero elements of GF(2™). To count the
number of nonzero L such that Tr(T3/L3) = 0, define 8 to be the cardinality of ¥
where U = {o? € GF(2™) | o/ # 0, Tr(a?) =0, j =0 (mod 3)}. Let T3 = o for
some j. We separate the remainder of the proof into two cases according to whether j
is divisible by 3 or not.

Case 1 : Let T3 = o3k, for some k. Then if T3/L3 = R for some R € ¥, then
T3/(La™3)? = T3 /(La?"/3)3 = R and L € GF(2™). Hence, by the same argument in
Theorem 2.2, there exist 33 nonzero L such that Tr(T3/L?) = 0, and we have 33 — 3
weight 3 unreduced cosets whose transform is C(¢) and by Theorem 2.1 they are not
orphans. Also we have [ weight 3 reduced cosets with syndrome (0,75, *) for some
fixed T3 € GF(2™), and there are n/3 nonzero elements of GF(2™), Ty = o3 for some
k. This means that there are at least (n/3)(8)(38 —3) = nB(8 — 1) weight 3 cosets
which are not orphans.

Case 2 : Let T3 = o*, k = 1,2 (mod 3). Exactly half of the elements in GF(2™)
have trace zero, so we have (n —1)/2 — 3 = 1/2(n — 1 — 233) nonzero R = o7 such
that Tr(R) = 0, j is not divisible by 3. Note if j =1 (mod 3), then 2j = 2 (mod 3).
Thus, there are (n — 1 —23)/4R such that Tr(R) =0, j =1 or 2 (mod 3) respectively.
Since there exists L € GF(2™) such that T3/L3 = R € ¥ if and only if k = j (mod 3),
there are weight 3 unreduced cosets whose transform is C'(¢) and ((n —1 —203)/4) — 3
weight 3 reduced cosets with syndrome (0, T3, x) for some fixed nonzero 75 € GF(2™).
Therefore we have at least 2[(n/3)((n—1-206)/4)((3(n—1-28)—12)/4)] = (n/8)(n—
1—28)(n -5 — 23) weight 3 unreduced cosets which are not orphans.

From Case 1 and Case 2, there are at least nG(5—1)+ (n/8)(n—25—1)(n—28—15)
weight 3 unreduced cosets which are not orphans.

Theorem 2.4 Assume that m is odd. Let C(t), t = (0,T5,T5) be a reduced coset of
weight 3 and C(s), s = (S1,S53,55) be an unreduced coset whose transform is C(t). If
Tr(Ts/S?) =0, then C(s) is not an orphan.

Proof Let { A1, Aa, A3} be the coset leader of C'(¢). Then {A;+51, Aa+S1, A3+51} is
the coset leader of C(s). Since Tr(T5/S7) = 0, by Lemma 1.9, X? 4+ S?X +T5/51 =0
has roots P, Q € GF(2™) such that P+ Q = S? and PQ = T5/S;. Therefore
X4+ 83X +T5/81 = (X2 + 51X+ P)(X%2+ 51X +Q) (3) for P, Q € GF(2™). Since
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P+ Q+ = S%, Tr(P/S?) +Tr(Q/S?) = Tr(1) = 1. Thus only one of Tr(P/S?) and
Tr(Q/S?), say Tr(P/S%), equals to zero. By Lemma 1.9, there exists L € GF(2™) such
that L is a root of X2+ 5, X + P = 0. From (*3), L is a root of X4+ S3X +T5/S; = 0,
and so S1L* + SfL = S} + L® + (S; + L) = Ts. Hence {S1, L, Sy + L} is coset leader
of weight 3 reduced coset C(p) with syndrome (0, P, T5) where P = S1L(S, + L). By
Lemma 1.10, a coset C(p’) = C(t) + C(p) with syndrome (0,75 + P,0) has weight 5.
Now A = {Ay, Ay, A3, 51, L, S1 + L} is a vector of C(p’) has a vector of weight less
than 5, contradicting to that C(p’) has weight 5. This A is a vector in C(p’) of weight
6. Thus {A; + S1,As + S1,As + S1, L, L+ S1} is a weight 5 vector in C'(p’) and is a
coset leader. Since any descendent of coset leader is also coset leader of some coset,
{A1+ 51, As+ 51, A3+ S1, L} is a coset leader of some coset which is a parent of C(s).
Therefore C(s) is not an orphan.

We have shown that many weight 3 unreduced cosets are not orphans. We conjecture
that all weight 3 unreduced cosets are not orphans. We prove that this conjecture for
m =4 and 5.

Lemma 2.5 Let C(s), s = (S1,953,S55) be a weight 3 unreduced coset. For each
weight 4 vector A = {Ay, Aa, A3, Ay} of C(s) with A; # Sy, @ = 1,---,4, we have
A={A1+51,As + S1, A3+ S1, Ay + S1} is also a weight 4 vector of C(s).

Proof Since the A; are distinct nonzero elements different from Sy, the elements A;+
S; are nonzero and distinct. We calculate Zle (A;+51)7 = Z?Zl AT 48 (S (A)T Y+
SITHS AN+ 3087 =S A7 since Y AT =871 5 =1,3,5.

Corollary 2.6 Any weight 4 coset C(s) has at least two coset leaders.

Lemma 2.7 A locator polynomial of a weight 4 vector of the weight 3 unreduced
coset C(s) and a locator polynomial of weight 4 vector of the transform C(t) of C(s)
have at most one common root.

Proof Let Q = {Q1,Q2,Q3,Q4} and P = {Py, Py, P3, P,} be weight 4 vectors in
C(s) and C(t) respectively. Without loss of generality, assume that @; = P; and
Q2 = P». We claim that {Q3,Q4, P3, Py} € C(s'), s’ = (51,53,57), a coset of weight
1. This follows since Q} + Q) =S; + Q| +Q, =S;+ P{ + P = S; +T; + P{ + P| =
S{ + Pg + PZ, j = 1,3,5. Therefore {S1,Q3,Q4, P3P,} is a codeword, contradicting
the fact that the minimum distance of BCH (3, m) is 7.

Lemma 2.8 Suppose that the locator polynomial o(X) of weight 4 vector of weight 3
unreduced coset C(s) has one common root with the locator polynomial &(X) of weight
4 wvector of its transform C(t). If Sy is neither a root of o(X) nor 6(X), then 6(X)
cannot have a common root with (X +S1), where o(X+51) is also a locator polynomial
of weight 4 vector of C(s).
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Proof Let A ={A;, Ay, A3} be a coset leader of C(t), and let P = {Py, P, P3, P,}
and Q = {Q1,Q2,Q3,Q4} be weight 4 vectors of C(t) abd C(s) respectively. Sup-
pose that the locator polynomial 6(X) of P has one common root with the locator
polynomial o(X) of Q, say Pi = Q1. We can say that P is of the form P11 =
P+ A;, i =1,2,3 since {P1, Py + A1, Py + Ay, P3s + A3} is a weight 4 vector of C(t)
and any two distinct weight 4 vectors are disjoint. By Lemma 2.5 and Q; # 0, Q =
{Q1+51,Q2+ 51,Q3+ 51,Q4+ S1} is a weight 4 vector of C(s) and o(X +S7) is the
locator polynomial of Q. So suppose that P and @ have a common nonzero position.
If P, = @Q; + 51 for some i, then Q)1 + Q); = S, since P = );. This contradicts the
fact that the weight of @ is 4. Without loss of generality, assume that Py = Q2 + 57.
Then Qs +S1 =P =P +A1 =Q1+ A1, Q1+Q2+ 51 = Q3+ Qs = A1. So we have
Q3 = Qa4+ Ay Hence {Q4, Qs+ A1, Qs+ A2, Qs+ Az} = {Q4,Q3, Qs+ Az, Qs+ Az} is
weight 4 vector in C'(¢) which has two common nonzero positions with @, contradicting
Lemma 2.7. Hence P cannot have a common nonzero position with Q).

Theorem 2.9 No weight 3 unreduced coset is an orphan for m =4 and 5.

Proof Let C(s) be weight 3 coset and let C(t) be its transform with coset leader
A ={A;, Ay, A3}. Then {57, A1, As, A3} is a weight 4 vector of C(s) since S; # 0, A;.
We claim that this is the only weight 4 vector of C(s). To get a contradiction, assume
that Q = {Q17Q27Q37Q4}7 Qz 7é Sly A] = 17" : 74; ] = 17273 is another Welght
4 vector of C(s). Then Q = {Q1 + S1,Q2 + S1,Q3 + S1,Q4 + S1} is also weight 4
vector of C(s) by Lemma 2.5. Define P(i) = {Q;,Q; + A1,Q; + A2,Q; + A3} and
P(i) = {Qi + 51,Qi + 51 + A1,Qi + S1 + A2,Q; + S1 + Az} for i = 1,--- ,4. Then
P(i) and P(i) are weight 4 vectors of C(¢). It is sufficient to show that these 8 weight
4 vectors are distinct since C(t) has only (n —3)/4 < 8, (m = 4,5) weight 4 vectors
by Theorem 1.7. If P(i) = P(j), i@ # j then we have Q; = Q; + Ay, for some k, so
the locator polynomial of P(j) has two common roots with locator polynomial of @,
contradicting Lemma 2.7. Thus we have P(i) # P(j), and P(i) # P(j) for i # j.
If P(i) = P(i) then A; = S;, contradicting C(s) has weight 3. Now assume that
P(i) = P(j), i # j,sayi =1, j = 2. Then Q; = Q2 + S; + Ay for some k. This
implies Q3 = Q4 + Ak, so the locator polynomial of P(4) has two common roots with
@ contradicting Lemma 2.7. Thus all these weight 4 vectors are distinct, contradicting
Theorem 1.7. Hence C(s) has only one weight 4 vector and so is not an orphan by
Theorem 1.1.
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