THE ORPHAN STRUCTURE OF BCH(3,m) CODE

Geum-sug Hwang

Abstract

If C is a code, an *orphan* is a coset without any parent. We investigate the structure of orphans of the code BCH(3, m). All weight 5 cosets and all weight 3 *reduced* cosets are orphans, and all weight 1,2 and 4 are not orphans. We conjecture that all weight 3 *unreduced* cosets are not orphans. We prove this conjecture for m = 4, 5.

1. Introduction

An [n, k] code C over F_q is a k-dimensional subspace of the n-tuple space $GF(q^n)$. An [n,k] code C can be specified by k linearly independent vectors in C. A k by n matrix G over F_q whose rows forms a basis of C is called *generator matrix* of C and $C = \{x = uG \mid u = (u_1, u_2, \cdots, u_k), u_i \in F_q\}$ (*1). Also C can be specified by n-k linearly independent homogeneous equations. A n-k by n matrix H such that $C = \{(x_1, x_2, \dots, x_n) \mid Hx^t = 0, x_i \in F_q\}$ (*2) is called *parity check matrix* for C. (*1) and (*2) together imply that G and H are related by $GH^t = 0$ and $HG^t = 0$. A coset of a code C is the set $a + C = \{a + x \mid x \in C\}$ for any vector a. Each vector b is in some coset and each coset contains q^k vectors. For a vector b, $s = Hb^t$ is the syndrome of b where s is a column vector of length n - k. Two vectors are in same coset if and only if $Ha^t = Hb^t$. Hence there are one to one correspondence between syndromes and cosets. A minimum weight vector in a coset is called a *coset leader* and the *coset* weight is the weight of a coset leader. The cosets of C are partially ordered by defining for two cosets C' and C'' of C, $C' \leq C''$ provided there is a coset leader x' of C' and a coset leader x'' of C'' such that $x' \leq x''$. Here for the vectors $x' = (x'_1, x'_2, \cdots, x'_n)$ and $x'' = (x''_1, x''_2, \dots, x''_n)$, $x' \leq x''$ means that $x''_i \neq 0$ whenever $x'_i \neq 0$. The coset C' is a *child* of C'', and C'' is a *parent* of C', provided $C' \leq C''$ and there is no coset Dwith C' < D < C''. An orphan is a coset without any parent.

Typeset by \mathcal{AMS} -T_EX

Key words and phrases. orphan, reduced coset, unreduced coset.

This research was supported by PUFS under grant PUFS-2000

GEUM-SUG HWANG

Let BCH(t, m) denote the binary Bose-Chaudhuri-Hocquenghem code of primitive length $n = 2^m - 1$ and design distance $\delta = 2t + 1$. We investigate the orphan structure of the code BCH(3, m) code. The BCH(3, m) code, $m \ge 4$, is the null space of the 3 by n matrix H over $GF(2^m)$ given by

$$H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\ 1 & \alpha^3 & \alpha^6 & \cdots & \alpha^{3(n-1)} \\ 1 & \alpha^5 & \alpha^{10} & \cdots & \alpha^{5(n-1)} \end{bmatrix}$$

where α is a primitive element of $GF(2^m)$. The syndrome s of a received word $r = (r_0, r_1, \dots, r_{n-1})$ is $s = Hr^t = (S_1, S_3, S_5), S_j \in GF(2^m)$. The cosets are the set $C(s) = \{r : Hr^t = s\}$. Given an arbitrary binary n-tuple $a = (a_0, a_1, \dots, a_{n-1})$ of weight ω , the locator polynomial of a is the polynomial of degree ω defined by

$$\sigma(X) = \prod_{\{i:a_i \neq 0\}} (X + \alpha^i) = X^{\omega} + \sigma_1 X^{\omega - 1} + \dots + \sigma_{\omega}.$$

The roots of the locator polynomial of a indicate the coordinate positions which are 1 in a. There is a one to one correspondence between binary n-tuples and locator polynomials. A locator polynomial $\sigma(X) = \prod_{i=1}^{\omega} (X + A_i)$ of degree ω is called an error locator polynomial with syndrome s provided it is the locator polynomial of a coset leader of a coset C(s), $s = (S_1, S_3, S_5)$ of weight ω . This implies that $S_j =$ $\sum_{i=1}^{\omega} A_i^j$, j = 1, 3, 5. We give the relation between the coefficients σ_i of the locator polynomial $\sigma(X)$ and the components S_j of its syndrome, namely $S_1 = \sigma_1$, $S_3 =$ $\sigma_1 S_1^2 + \sigma_2 S_1 + \sigma_3$ and $S_5 = \sigma_1 S_1^4 + \sigma_2 S_3 + \sigma_3 S_1^2 + \sigma_4 S_1 + \sigma_5$.

We define the syndrome (T_1, T_3, T_5) to be reduced provided that $T_1 = 0$. A coset with reduced syndome is called a reduced coset and a coset with $T_1 \neq 0$ is called an unreduced coset. The transform of C(s), $s = (S_1, S_3, S_5)$ is the reduced coset C(t) with syndrome t, $t = (T_1, T_3, T_5) = (0, S_3 + S_1^3, S_5 + S_1^5)$. Note that two different cosets can have the same transform. Any coset C(s) of weight 1 has syndrome $s = (S_1, S_1^3, S_1^5)$, and so its transform is the code C(0). Hence if $t \neq 0$ then C(s) has weight > 1. The covering radius of a code is the largest weight of orphan. The existence of orphans of weight less than covering radius complicates the determination of the covering radius of a code. Let's start with the following characterization of orphan given by R. A. Brualdi and V. S. Pless.

Theorem 1.1 Let C' be a coset of C with weight ω . Then C' is an orphan if and only if the vectors of C' with weights ω and $\omega + 1$ cover all coordinate positions.

Proof We first note that each parent of C' is of the form $e_i + C'$ for some unit vector e_i , $1 \le i \le n$. If the vectors of weight w and w + 1 of C' cover all coordinate positions, then the weight of $e_i + C'$ is either w - 1 or w and hence $e_i + C'$ cannot be a parent

of C'. Now suppose that C' is an orphan. If there is a coordinate position j which is not coverd by any vector of weight w or w + 1 of C', then $e_j + C'$ contains a vector of weight w + 1 but contains no vectors of weight w, and it follows that $e_j + C'$ is a parent of C'.

Let a coset C' of a code C of distance d have weight ω , $\omega < \lfloor (d-1)/2 \rfloor$. If there are two vectors u, v in C' of weight ω or $\omega + 1$, then the vector u + v is a codeword and its weight is less than d, contradicting the distance of C is d. Hence such a coset C' cannot be an orphan by theorem 1.1.

Since the distance of BCH(3, m) is 7, all cosets of weight 1 and 2 are not orphans. Since the maximal coset weight of BCH(3, m) is 5, it is trivial that all cosets of weight 5 are orphans. Hence it remains only to investigate cosets of weight 3 and 4. We note that a coset of weight 3 has a unique coset leader. We now use the notation $\sigma_k(X)$ to denote a locator polynomial of degree k.

Lemma 1.2 Let $\sigma_{2k-1}(X) = \prod_{i=1}^{2k-1} (X + A_i), k \ge 1$, be the locator polynomial of a vector of a reduced coset C(t). If $L\sigma_{2k-1}(L) \ne 0$ for some $L \in GF(2^m)$, then $(X+L)\sigma_{2k-1}(X+L)$ is a locator polynomial of degree 2k with syndrome t. Conversely, if $\sigma_{2k}(X)$ is any even degree locator polynomial with syndrome t and L is one of its roots, then $\sigma_{2k}(X+L)/X$ is a locator polynomial of degree 2k-1 with syndrome t.

Proof Since $\sigma_{2k-1}(X)$ is a locator polynomial, its roots A_i , $i = 1, \dots, 2k-1$ are distinct nonzero elements of $GF(2^m)$. It follows from the condition $L\sigma_{2k-1}(L) \neq 0$ that L and $A_i + L$ are also distinct and nonzero so that $\sigma_{2k}(X) = (X + L)\sigma_{2k-1}(X + L)$ is also locator polynomial. To show that $\sigma_{2k}(X)$ has syndrome t it suffices to show that $L^j + \sum_{i=1}^{2k-1} (A_i + L)^j = \sum_{i=1}^{2k-1} A_i^j$, j = 1, 3, 5. Since $\sum_{i=1}^{2k-1} A_i = 0$, we also have $\sum A_i^2 = 0$ and $\sum A_i^4 = 0$. Hence $L + \sum (A_i + L) = \sum A_i = 0$ and $L^j + \sum (A_i + L)^j = \sum A_i^j$ by expanding $(A_i + L)^j$, j = 3, 5.

Conversely suppose that L is one of the roots of an even degree locator polynomial $\sigma_{2k}(X)$. Let A_1, \dots, A_{2k} be the roots of $\sigma_{2k}(X)$ and assume $L = A_1$. Since all A_i , $i = 1, \dots, 2k$ are nonzero and distinct, $L + A_i = A_1 + A_i$ are also distinct and nonzero. Hence $\sigma_{2k}(X + L)/X$ is a locator polynomial of degree 2k - 1. Since $L^j + \sum_{i=2}^{2k} (A_i)^j = 0$, j = 1, 2, 4

$$\sum_{i=2}^{2k} (A_i + L)^j = \sum (A_i)^j + L(\sum (A_i)^{j-1}) + L^{j-1}(\sum A_i) + L^j$$
$$= \sum (A_i)^j + LL^{j-1} + L^{j-1}L$$
$$= \sum (A_i)^j, \ j = 1, 3, 5.$$

Thus $\sigma_{2k}(X+L)/X$ also has syndrome t.

Henceforth we denote a binary *n*- tuple *A* of weight ω with 1's in positions $i_1, i_2, \dots, i_{\omega}$ by $A = \{A_1, A_2, \dots, A_{\omega}\} = \{\alpha^{i_1}, \alpha^{i_2}, \dots, \alpha^{i_{\omega}}\}.$

Corollary 1.3 Any weight 4 vector of weight 3 reduced coset C(t) has the form $\{L, A_1 + L, A_2 + L, A_3 + L\}$ for some $L \in GF(2^m)$, $L \neq 0$, A_i , i = 1, 2, 3 where $\{A_1, A_2, A_3\}$ is the unique coset leader of C(t).

Proof Let $\sigma_3(X) = \prod_{i=1}^3 (X + A_i)$ be the error locator polynomial of C(t). For any nonzero $L \in GF(2^m)$, if $L \neq A_i$, i = 1, 2, 3 then $L\sigma_3(L) \neq 0$. Hence $(X + L)\sigma_3(X + L)$ is locator polynomial of degree 4 with syndrome t by Lemma 1.2. This implies that $\{L, A_1 + L, A_2 + L, A_3 + L\}$ is a weight 4 vector of C(t). Since the distance of BCH(3, m)is 7, any two distinct locator polynomials of degree 4 with syndrome t have no common root. From the converse part of Lemma 1.2 and uniqueness of the coset leader of C(t), any weight 4 vector of C(t) has this form.

Theorem 1.4 The weight $\tilde{\omega}$ of a reduced coset C(t) is either zero or an odd integer ≥ 3 .

Proof Because any coset of weight 1 has syndrome $s = (S_1, S_1^3, S_1^5)$, $S_1 \neq 0$, \tilde{w} cannot be one. Assume that \tilde{w} is positive and even, say $\tilde{w} = 2k$. Let $\sigma_{2k}(X)$ be an error locator polynomial with syndrome t, and let L be a root of $\sigma_{2k}(X)$. Define $\sigma_{2k-1}(X) = \sigma_{2k}(X+L)/X$. Then $\sigma_{2k-1}(X)$ is a locator polynomial with syndrome t by Lemma 1.2, contradicting \tilde{w} is the weight of C(t).

We get the relation between error locator polynomial of coset C(s) and that of its transform C(t) from the next theorem which is in [2]T. Berger and V. A. Van Der Horst. Henceforth we denote a binary *n*-tuple A of weight ω with 1's in positions $i_1, i_2, \dots, i_{\omega}$ by $A = \{A_1, A_2, \dots, A_{\omega}\} = \{\alpha^{i_1}, \alpha^{i_2}, \dots, \alpha^{i_{\omega}}\}$. Two vectors are *disjoint* provided their locator polynomials have no common roots.

Theorem 1.5 Let C(s), $s = (S_1, S_3, S_5)$ be a coset of weight $\omega > 1$. Then an error locator polynomial $\sigma(X)$ with syndrome s can be obtained from an error locator polynomial $\tilde{\sigma}(X)$ of its transform by

$$\sigma(X) = \begin{cases} \tilde{\sigma}(X), & \text{if } S_1 = 0\\ \tilde{\sigma}(X)/(X+S_1), & \text{if } S_1 \neq 0, \ \omega \ even\\ \tilde{\sigma}(X+S_1), & \text{if } S_1 \neq 0, \ \omega \ odd. \end{cases}$$

Proof If $S_1 = 0$, then t = s and $\sigma(X) = \tilde{\sigma}(X)$, so we need only consider $S_1 \neq 0$. **Case 1**: ω is even. By Theorem 1.4, $\tilde{\omega}$ equals either $\omega - 1$ or $\omega + 1$. Assume that $\tilde{\omega} = \omega - 1$. Then $\tilde{\sigma}(S_1)$ cannot equal zero because that implies $\tilde{\sigma}(X)/(X + S_1)$ is a locator polynomial of degree $\tilde{\omega} - 1 = \omega - 2$ with syndrome s, thereby contracting C(s) has weight w. Thus $\tilde{\sigma}(X + S_1)$ has distinct nonzero roots and is a locator polynomial. Therefore $\tilde{\sigma}(X + S_1)$ has weight $\tilde{w} = w - 1$ with syndrome s because we have

$$\sum_{i=1}^{\tilde{w}} (A_i + S_1)^j = \sum (A_i)^j + S_1(\sum (A_i)^{j-1}) + S_1^{j-1}(\sum A_i) + \sum S_1^j$$
$$= T_j + S_1^j, \ j = 1, 3, 5$$

since $(\sum A_i)^{j-1} = \sum A_i = 0$ where A_i , $i = 1, \dots, \tilde{w}$ are roots of $\tilde{\sigma}(X)$. This contradicts that C(s) has weight w, so $\tilde{w} = w + 1$. It follows that $\sigma(S_1) \neq 0$. Otherwise, $\sigma(X)/(X+S_1)$ is a locator polynomial with syndrome t and degree w-1, which would contradict that C(t) has weight $\tilde{w} = w + 1$. Since we now know that $\sigma(S_1) \neq 0$ and $\tilde{w} = w + 1$, $\tilde{\sigma}(X) = (X + S_1)\sigma(X)$ is an locator polynomial with syndrome t, or $\sigma(X) = \tilde{\sigma}(X)/(X+S_1)$.

Case 2: w is odd. By Theorem 1.4, $\tilde{w} = w$ and $\tilde{\sigma}(X + S_1)$ is a locator polynomial with syndrome s and the degree \tilde{w} of $\tilde{\sigma}(X + S_1)$ equals w. Thus $\tilde{\sigma}(X + S_1)$ is an error locator polynomial with syndrome s.

Corollary 1.6 No orphan has weight 4.

Proof Let $\sigma(X)$ be an error locator polynomial of weight 4 coset C(s) with coset leader $\{A_1, A_2, A_3, A_4\}$ with syndrome $s = (S_1, S_3, S_5), S_1 \neq 0$. By Theorem 1.5, an error locator polynomial $\tilde{\sigma}(X)$ of the transform C(t) of C(s) is $\tilde{\sigma}(X) = \sigma(X)(X+S_1)$. This means that $\{S_1, A_1, A_2, A_3, A_4\}$ is a coset leader of C(t), and C(t) is a parent of C(s). Thus a coset of weight 4 is not orphan.

Theorem 1.7 All reduced cosets of weight 3 are orphans. Furthermore, such cosets have exactly (n-3)/4 weight 4 vectors.

Proof Let C(t) be a reduced coset of weight 3 with coset leader $A = \{A_1, A_2, A_3\}$. For any nonzero $L \in GF(2^m)$, $L \neq A_i$, i = 1, 2, 3, $\overline{L} = \{L, L + A_1, L + A_2, L + A_3\}$ is a weight 4 vector in C(t). Since distance is 7, A and \overline{L} are disjoint. Hence A and weight 4 vectors of C(t) cover all coordinate positions. Therefor, any two distinct weight 4 vectors are also disjoint, so there are exactly (n - 3)/4 weight 4 vectors of C(t).

We define the trace mapping from $GF(2^m)$ to GF(2) by

$$Tr(A) = A + A^2 + \dots + A^{2m-1}, \ A \in GF(2^m).$$

The following lemma shows the properties of trace mappings which can be found in [8]F. J. MacWilliams and N. J. A. Solane.

Lemma 1.8 The followings hold:

(i) Exactly half of the elements A in $GF(2^m)$ have Tr(A) = 0 and exactly half have Tr(A) = 1.

(*ii*) $Tr(A+B) = Tr(A) + Tr(B), \ A, B \in GF(2^m).$ (*iii*) $Tr(A^{2^i}) = Tr(A), \ i = 1, \cdots, m-1.$

We next obtain sufficient conditions for a weight 3 coset not to be an orphan by using the trace mapping. [4]E. R. Berlekamp, H. Rumssey and G. Solomon characterized quadratic equations over fields of characteristic two which have roots and we record their result in the next lemma.

Lemma 1.9 The quadratic equation, $X^2 + AX + B = 0$, $A, B \in GF(2^m)$, $A \neq 0$, has solutions in $GF(2^m)$ if and only if $Tr(B/A^2) = 0$.

Lemma 1.10 Any reduced coset with syndrome $(0, 0, T_5)$, $T_5 \neq 0$ has weight 5.

Proof Let C(t) has syndrome t, $t = (0, 0, T_5)$. Since $T_1 = 0$, C(t) has weight 3 or 5 by Theorem 1.4. Assume that C(t) has weight 3 and let $\tilde{\sigma}(X) = X^3 + \sigma_1 X^2 + \sigma_2 X + \sigma_3$ be the error locator polynomial of C(t). we have $\sigma_1 = T_1 = 0$ and $\sigma_3 = T_3 = 0$. Then $\tilde{\sigma}(X)$ has zero as its root which contradicts that $\tilde{\sigma}(X)$ is a locator polynomial. Hence C(t) has weight 5.

Lemma 1.11 Assume *m* is odd. Any reduced coset C(t) with syndrome $t = (0, T_3, 0), T_3 \neq 0$ has weight 5.

Proof Since $T_1 = 0$, C(t) has weight 3 or 5 by Theorem 1.4. Assume that C(t) has weight 3 with coset leader $\{A_1, A_2, A_3\}$. Since $A_1 + A_2 + A_3 = 0$, $0 = T_5 = T_3(A_1A_2 + A_2A_3 + A_1A_3) = T_3(A_1^2 + A_2^2 + A_1A_2)$. Since $T_3 \neq 0$, $A_1^2A_2^2 + A_1A_2 = 0$ and so A_2 is a root of $X^2 + A_1X + A_1^2 = 0$. By Lemma 1.8, $Tr(A_1^2/A_2^2) = Tr(1) = 0$, contradicting to that m is odd. Hence C(t) has weight 5.

2. Main Theorems

Theorem 2.1 Let C(t), $t = (0, T_3, T_5)$ be a reduced coset of weight 3 and C(s), $s = (S_1, S_3, S_5)$ be a unreduced coset whose transform is C(t). If $Tr(T_3/S_1^3) = 0$, then C(s) is not an orphan.

Proof Let $A = \{A_1, A_2, A_3\}$ be the coset leader of C(s). Then $\{A_1+S_1, A_2+A_1, A_3+S_1\}$ is the coset leader of C(t) by Theorem 1.5. Note that C(s) is not an orphan if and only if there exists a nonzero $L \in GF(2^m)$ such that $A' = \{A_1, A_2, A_3, L\}$ is a coset leader of weight 4 coset. Since, by Lemma 1.9 $Tr(T_3/S_1^3) = 0$ if and only if $X^2 + S_1X + T_3/S_1 = 0$ has a solution, there exists a $L \in GF(2^m)$ such that $LS_1(L + S_1) + T_3 = 0$. If L = 0 then $T_3 = 0$, and so C(t) has weight 5 by Lemma 1.10. Hence $L \neq 0$. We now show that $L \neq A_i$, i = 1, 2, 3. Assume that $L = A_1$. Then $A_1S_1(A_1 + S_1) = T_3 = (A_1 + S_1)^3 + (A_2 + S_1)^3 + (A_3 + S_1)^3 = (A_1 + S_1)(A_2 + S_1)(A_3 + S_1) = (A_1S_1 + A_1A_2)(A_1 + S_1)$ implies $A_2A_3 = 0$, contradicting A has

weight 3. Thus $A' = \{A_1, A_2, A_3, L\}$ is a weight 4 vector of some coset C(s'), where $s' = (S_1 + L, S_3 + L^3, S_5 + L^5)$. Then the transform C(t') of C(s'), has syndrome $(0, T_3 + LS_1(L + S_1), T_5 + LS_1(L^3 + S_1^3))$. Since $T_3 + LS_1(L + S_1) = 0$, the coset weight of C(t'), $t' = (0, 0, T_5 + LS_1(L^3 + S_1^3))$ is 5 by Lemma 1.10. Hence C(s') has weight 4 by Theorem 1.5. Thus the weight 4 vector A' is a coset leader of C(s'), and hence C(s') is a parent of C(s). Therefore C(s) is not an orphan.

Theorem 2.2 Assume *m* is odd. Let C(t), $t = (0, T_3, T_5)$ be a reduced coset of weight 3. There exists (n - 7)/2 weight 3 unreduced cosets whose transform is C(t), and they are not orphans. Furthermore, there are at least n(n - 1)(n - 7)/12 weight 3 cosets which are not orphans.

Proof Let $A = \{A_1, A_2, A_3\}$ be the coset leader of C(t). By Theorem 1.5 and the uniqueness of the coset leader of C(t), for any nonzero $L \in GF(2^m)$ with $L \neq A_i$, the coset C(l), $l = (L, T_3 + L^3, T_5 + L^5)$ has weight 3 with coset leader $\{A_1 + L, A_2 + L, A_3 + L\}$ and C(t) is a transform of C(l). Hence we want to count L such that $Tr(T_3/L^3) = 0$, $L \neq 0, A_1, A_2, A_3$. Since m is odd, $n = 2^m - 1$ is not divisible by 3. This means α^3 is a primitive element whenever α is a primitive element of $GF(2^m)$. Thus, for the given $T_3, \{T_3/L^3 \mid L \in GF(2^m), L \neq 0\}$ is the set of all nonzero elements of $GF(2^m)$. By (i) in Lemma 1.8, there are exactly (n - 1)/2 nonzero L such that $Tr(T_3/L^3) = 0$. But,

$$Tr(T_3/L^3) = Tr((A_1^3 + A_2^3 + A_3^3)/A_1^3) = Tr(A_1A_2A_3/A_1^3)$$

= $Tr((A_3^2 + A_1A_3)/A_1^2) = Tr((A_3/A_1)^2 + Tr(A_3/A_1))$
= $Tr(A_3/A_1) + Tr(A_3/A_1) = 0,$

using $A_1 + A_2 + A_3 = 0$ and (ii), (iii) in Lemma 1.8. We conclude that if $L = A_i$, i = 1, 2, 3 then $Tr(T_3/L^3) = 0$, but coset C(l), $l = (L, T_3 + L^3, T_5 + L^5)$ does not have weight 3. Therefore there are (n + 1)/2 - 4 = (n - 7)/2 weitght 3 unreduced cosets whose transform is C(t) and they are not orphans by Theorem 2.1. We now count the number of weight 3 reduced cosets with syndrome $(0, T_3, *)$ for some fixed $T_3 \in GF(2^m)$ and arbitrary $* \in GF(2^m)$. This is equivalent to counting the number of coset leaders of these cosets since each coset has only one coset leader. Let C(t) be a weight 3 reduced coset with syndrome $(0, T_3, *)$ and let $\{A_1, A_2, A_3\}$ be the coset leader of C(t). Then, by Lemma 1.9, $T_3 = A_1^3 + A_2^3 + A_3^3 = A_1^3 + A_2^3 + (A_1 + A_2)^3 = A_1A_2(A_1 + A_2)$ (or $A_2A_3(A_2 + A_3)$). Therefore

 $\{A_1, A_2, A_3\}$ is the coset leader of a coset $C(t), t = (0, T_3, *)$ if and only if A_i is a root of $X^2 + A_j X + T_3/A_j = 0, i \neq j \ i, j = 1, 2, 3$ if and only if $Tr(T_3/A_1^3) = Tr(T_3/A_2^3) = Tr(T_3/A_3^3) = 0.$

We have already noted that there are (n-1)/2 nonzero $L \in GF(2^m)$ such that $Tr(T_3/L^3) = 0$, so there are 1/3((n-1)/2) weight 3 reduced cosets with syndrome

 $(0, T_3, *)$ for each nonzero $T_3 \in GF(2^m)$. Therefore we have at least n(1/3((n-1)/2)((n-7)/2) = n(n-1)(n-7)/12 weight 3 unreduced cosets which are not orphans.

Theorem 2.3 Assume *m* is an even. There are at least $n\beta(\beta - 1) + (n/8)(n - 2\beta)(n-2\beta-5)$ weight 3 unreduced cosets which are not orphans where β is the number of nonzero elements $\alpha^j \in GF(2^m)$ such that the trace of α^j is zero and $j \equiv 0 \pmod{3}$.

Proof Let C(t), $t = (0, T_3, T_5)$ be a weight 3 reduced coset with coset leader $A = \{A_1, A_2, A_3\}$. Since m is even, $n = 2^m - 1$ is divisible by 3. So $\{T_3/L^3 \mid L \in GF(2^m), L \neq 0\}$ is not the set of all nonzero elements of $GF(2^m)$. To count the number of nonzero L such that $Tr(T_3/L^3) = 0$, define β to be the cardinality of Ψ where $\Psi = \{\alpha^j \in GF(2^m) \mid \alpha^j \neq 0, Tr(\alpha^j) = 0, j \equiv 0 \pmod{3}\}$. Let $T_3 = \alpha^j$ for some j. We separate the remainder of the proof into two cases according to whether j is divisible by 3 or not.

Case 1: Let $T_3 = \alpha^3 k$, for some k. Then if $T_3/L^3 = R$ for some $R \in \Psi$, then $T_3/(L\alpha^{n/3})^3 = T_3/(L\alpha^{2n/3})^3 = R$ and $L \in GF(2^m)$. Hence, by the same argument in Theorem 2.2, there exist 3β nonzero L such that $Tr(T_3/L^3) = 0$, and we have $3\beta - 3$ weight 3 unreduced cosets whose transform is C(t) and by Theorem 2.1 they are not orphans. Also we have β weight 3 reduced cosets with syndrome $(0, T_3, *)$ for some fixed $T_3 \in GF(2^m)$, and there are n/3 nonzero elements of $GF(2^m)$, $T_3 = \alpha^{3k}$ for some k. This means that there are at least $(n/3)(\beta)(3\beta - 3) = n\beta(\beta - 1)$ weight 3 cosets which are not orphans.

Case 2: Let $T_3 = \alpha^k$, $k = 1, 2 \pmod{3}$. Exactly half of the elements in $GF(2^m)$ have trace zero, so we have $(n-1)/2 - \beta = 1/2(n-1-2\beta)$ nonzero $R = \alpha^j$ such that Tr(R) = 0, j is not divisible by 3. Note if $j \equiv 1 \pmod{3}$, then $2j \equiv 2 \pmod{3}$. Thus, there are $(n-1-2\beta)/4R$ such that Tr(R) = 0, $j \equiv 1$ or $2 \pmod{3}$ respectively. Since there exists $L \in GF(2^m)$ such that $T_3/L^3 = R \in \Psi$ if and only if $k \equiv j \pmod{3}$, there are weight 3 unreduced cosets whose transform is C(t) and $((n-1-2\beta)/4) - 3$ weight 3 reduced cosets with syndrome $(0, T_3, *)$ for some fixed nonzero $T_3 \in GF(2^m)$. Therefore we have at least $2[(n/3)((n-1-2\beta)/4)((3(n-1-2\beta)-12)/4)] = (n/8)(n-1-2\beta)(n-5-2\beta)$ weight 3 unreduced cosets which are not orphans.

From Case 1 and Case 2, there are at least $n\beta(\beta-1) + (n/8)(n-2\beta-1)(n-2\beta-5)$ weight 3 unreduced cosets which are not orphans.

Theorem 2.4 Assume that m is odd. Let C(t), $t = (0, T_3, T_5)$ be a reduced coset of weight 3 and C(s), $s = (S_1, S_3, S_5)$ be an unreduced coset whose transform is C(t). If $Tr(T_5/S_1^5) = 0$, then C(s) is not an orphan.

Proof Let $\{A_1, A_2, A_3\}$ be the coset leader of C(t). Then $\{A_1+S_1, A_2+S_1, A_3+S_1\}$ is the coset leader of C(s). Since $Tr(T_5/S_1^5) = 0$, by Lemma 1.9, $X^2 + S_1^2X + T_5/S_1 = 0$ has roots $P, Q \in GF(2^m)$ such that $P + Q = S_1^2$ and $PQ = T_5/S_1$. Therefore $X^4 + S_1^3X + T_5/S_1 = (X^2 + S_1X + P)(X^2 + S_1X + Q)$ (*3) for $P, Q \in GF(2^m)$. Since $P + Q + = S_1^2$, $Tr(P/S_1^2) + Tr(Q/S_1^2) = Tr(1) = 1$. Thus only one of $Tr(P/S_1^2)$ and $Tr(Q/S_1^2)$, say $Tr(P/S_1^2)$, equals to zero. By Lemma 1.9, there exists $L \in GF(2^m)$ such that L is a root of $X^2 + S_1X + P = 0$. From (*3), L is a root of $X^4 + S_1^3X + T_5/S_1 = 0$, and so $S_1L^4 + S_1^4L = S_1^5 + L^5 + (S_1 + L)^5 = T_5$. Hence $\{S_1, L, S_1 + L\}$ is coset leader of weight 3 reduced coset C(p) with syndrome $(0, P, T_5)$ where $P = S_1L(S_1 + L)$. By Lemma 1.10, a coset C(p') = C(t) + C(p) with syndrome $(0, T_3 + P, 0)$ has weight 5. Now $\overline{A} = \{A_1, A_2, A_3, S_1, L, S_1 + L\}$ is a vector of C(p') has a vector of weight less than 5, contradicting to that C(p') has weight 5. This \overline{A} is a vector in C(p') of weight 6. Thus $\{A_1 + S_1, A_2 + S_1, A_3 + S_1, L, L + S_1\}$ is a weight 5 vector in C(p') and is a coset leader. Since any descendent of coset leader is also coset leader of some coset, $\{A_1 + S_1, A_2 + S_1, A_3 + S_1, L\}$ is a coset leader of some coset which is a parent of C(s). Therefore C(s) is not an orphan.

We have shown that many weight 3 unreduced cosets are not orphans. We conjecture that all weight 3 unreduced cosets are not orphans. We prove that this conjecture for m = 4 and 5.

Lemma 2.5 Let C(s), $s = (S_1, S_3, S_5)$ be a weight 3 unreduced coset. For each weight 4 vector $A = \{A_1, A_2, A_3, A_4\}$ of C(s) with $A_i \neq S_1$, $i = 1, \dots, 4$, we have $\bar{A} = \{A_1 + S_1, A_2 + S_1, A_3 + S_1, A_4 + S_1\}$ is also a weight 4 vector of C(s).

Proof Since the A_i are distinct nonzero elements different from S_1 , the elements $A_i + S_1$ are nonzero and distinct. We calculate $\sum_{i=1}^4 (A_i + S_1)^j = \sum_{i=1}^4 A_i^j + S_1(\sum (A_i)^{j-1}) + S_1^{j-1}(\sum A_i) + \sum S_1^j = \sum A_i^j$, since $\sum A_i^{j-1} = S_1^{j-1}$, j = 1, 3, 5.

Corollary 2.6 Any weight 4 coset C(s) has at least two coset leaders.

Lemma 2.7 A locator polynomial of a weight 4 vector of the weight 3 unreduced coset C(s) and a locator polynomial of weight 4 vector of the transform C(t) of C(s) have at most one common root.

Proof Let $Q = \{Q_1, Q_2, Q_3, Q_4\}$ and $P = \{P_1, P_2, P_3, P_4\}$ be weight 4 vectors in C(s) and C(t) respectively. Without loss of generality, assume that $Q_1 = P_1$ and $Q_2 = P_2$. We claim that $\{Q_3, Q_4, P_3, P_4\} \in C(s')$, $s' = (S_1, S_1^3, S_1^5)$, a coset of weight 1. This follows since $Q_3^j + Q_4^j = S_j + Q_1^j + Q_2^j = S_j + P_1^j + P_2^j = S_j + T_j + P_3^j + P_4^j = S_1^j + P_3^j + P_4^j$, j = 1, 3, 5. Therefore $\{S_1, Q_3, Q_4, P_3P_4\}$ is a codeword, contradicting the fact that the minimum distance of BCH(3, m) is 7.

Lemma 2.8 Suppose that the locator polynomial $\sigma(X)$ of weight 4 vector of weight 3 unreduced coset C(s) has one common root with the locator polynomial $\tilde{\sigma}(X)$ of weight 4 vector of its transform C(t). If S_1 is neither a root of $\sigma(X)$ nor $\tilde{\sigma}(X)$, then $\tilde{\sigma}(X)$ cannot have a common root with $\sigma(X+S_1)$, where $\sigma(X+S_1)$ is also a locator polynomial of weight 4 vector of C(s). GEUM-SUG HWANG

Proof Let $A = \{A_1, A_2, A_3\}$ be a coset leader of C(t), and let $P = \{P_1, P_2, P_3, P_4\}$ and $Q = \{Q_1, Q_2, Q_3, Q_4\}$ be weight 4 vectors of C(t) abd C(s) respectively. Suppose that the locator polynomial $\tilde{\sigma}(X)$ of P has one common root with the locator polynomial $\sigma(X)$ of Q, say $P_1 = Q_1$. We can say that P is of the form $P_{i+1} = P_1 + A_i$, i = 1, 2, 3 since $\{P_1, P_1 + A_1, P_1 + A_2, P_3 + A_3\}$ is a weight 4 vector of C(t) and any two distinct weight 4 vectors are disjoint. By Lemma 2.5 and $Q_i \neq 0$, $\bar{Q} = \{Q_1 + S_1, Q_2 + S_1, Q_3 + S_1, Q_4 + S_1\}$ is a weight 4 vector of C(s) and $\sigma(X + S_1)$ is the locator polynomial of \bar{Q} . So suppose that P and \bar{Q} have a common nonzero position. If $P_1 = Q_i + S_1$ for some i, then $Q_1 + Q_i = S_1$, since $P_1 = Q_1$. This contradicts the fact that the weight of Q is 4. Without loss of generality, assume that $P_2 = Q_2 + S_1$. Then $Q_2 + S_1 = P_2 = P_1 + A_1 = Q_1 + A_1$, $Q_1 + Q_2 + S_1 = Q_3 + Q_4 = A_1$. So we have $Q_3 = Q_4 + A_1$. Hence $\{Q_4, Q_4 + A_1, Q_4 + A_2, Q_4 + A_3\} = \{Q_4, Q_3, Q_4 + A_2, Q_4 + A_3\}$ is weight 4 vector in C(t) which has two common nonzero positions with Q, contradicting Lemma 2.7. Hence P cannot have a common nonzero position with Q.

Theorem 2.9 No weight 3 unreduced coset is an orphan for m = 4 and 5.

Proof Let C(s) be weight 3 coset and let C(t) be its transform with coset leader $A = \{A_1, A_2, A_3\}$. Then $\{S_1, A_1, A_2, A_3\}$ is a weight 4 vector of C(s) since $S_1 \neq 0, A_i$. We claim that this is the only weight 4 vector of C(s). To get a contradiction, assume that $Q = \{Q_1, Q_2, Q_3, Q_4\}, Q_i \neq S_1, A_j \ i = 1, \dots, 4; j = 1, 2, 3$ is another weight 4 vector of C(s). Then $Q = \{Q_1 + S_1, Q_2 + S_1, Q_3 + S_1, Q_4 + S_1\}$ is also weight 4 vector of C(s) by Lemma 2.5. Define $P(i) = \{Q_i, Q_i + A_1, Q_i + A_2, Q_i + A_3\}$ and $\overline{P}(i) = \{Q_i + S_1, Q_i + S_1 + A_1, Q_i + S_1 + A_2, Q_i + S_1 + A_3\}$ for $i = 1, \dots, 4$. Then P(i) and P(i) are weight 4 vectors of C(t). It is sufficient to show that these 8 weight 4 vectors are distinct since C(t) has only (n-3)/4 < 8, (m=4,5) weight 4 vectors by Theorem 1.7. If P(i) = P(j), $i \neq j$ then we have $Q_i = Q_j + A_k$ for some k, so the locator polynomial of P(j) has two common roots with locator polynomial of Q, contradicting Lemma 2.7. Thus we have $P(i) \neq P(j)$, and $P(i) \neq P(j)$ for $i \neq j$. If $P(i) = \overline{P}(i)$ then $A_i = S_1$, contradicting C(s) has weight 3. Now assume that $P(i) = \overline{P}(j), i \neq j$, say i = 1, j = 2. Then $Q_1 = Q_2 + S_1 + A_k$ for some k. This implies $Q_3 = Q_4 + A_k$, so the locator polynomial of P(4) has two common roots with Q contradicting Lemma 2.7. Thus all these weight 4 vectors are distinct, contradicting Theorem 1.7. Hence C(s) has only one weight 4 vector and so is not an orphan by Theorem 1.1.

References

- [1] E. F. Assmus, Jr. and H. F. Mattson, Jr.[1976], Some three-error correcting BCH codes have covering radius 5,IEEE Trans. Inform. Theory, vol IT-22, 348-349.
- [2] T. Berger and J. A. Van der Horst1976], Complete decoding of triple-error correcting binary BCH codes. IEEE Trans. Inform. Theory, vol IT-22, 138-147.

- [3] E. R. Berkamp1968], Algebrac coding Theory, McGraw-Hill, New York.
- [4] E. R. Berkamp, H. Rumsy and G. Solomon1967], On the solution of algebrac equations over finite fields, information and Control, 10, 553-564.
- [5] T. Helleseth[1973], All binary 3-error correcting BCH codes on length 1 have covering radius 5, IEEE Trans. Inform. Theory, vol It-19, 344-356.
- [6] T. Helleseth[1985], On the covering radius of cyclic linear codes and arithmetic codes, Discrete Appl. Math., 11, 157-173.
- [7] F. J. MacWilliams and N. j. A. sloane[1977], The theory of Error-Correcting Codes, New York: North Holland.
- [8] A. Tieta" va"inen[1987], On the covering radius of long binary BCH codes. Discrete Appl. Math., 16, 75-77.

Division of Information and Management Science, College of Information and Science, Pusan University of Foreign Studies, 55-1, Uam-Dong, Nam-Gu, Busan email: gshwang@ taejo.pufs.ac.kr Classification number C020705