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THE ORPHAN STRUCTURE OF BCH(3,m) CODE

Geum-sug Hwang

Abstract
If C is a code, an orphan is a coset without any parent. We investigate the structure

of orphans of the code BCH(3, m). All weight 5 cosets and all weight 3 reduced cosets
are orphans, and all weight 1,2 and 4 are not orphans. We conjecture that all weight
3 unreduced cosets are not orphans. We prove this conjecture for m = 4, 5.

1. Introduction

An [n, k] code C over Fq is a k-dimensional subspace of the n-tuple space GF (qn).
An [n, k] code C can be specified by k linearly independent vectors in C. A k by n
matrix G over Fq whose rows forms a basis of C is called generator matrix of C and
C = {x = uG | u = (u1, u2, · · · , uk), ui ∈ Fq} (∗1). Also C can be specified by
n− k linearly independent homogeneous equations. A n− k by n matrix H such that
C = {(x1, x2, · · · , xn) | Hxt = 0, xi ∈ Fq} (∗2) is called parity check matrix for C.
(∗1) and (∗2) together imply that G and H are related by GHt = 0 and HGt = 0. A
coset of a code C is the set a+C = {a+x | x ∈ C} for any vector a. Each vector b is in
some coset and each coset contains qk vectors. For a vector b, s = Hbt is the syndrome
of b where s is a column vector of length n− k. Two vectors are in same coset if and
only if Hat = Hbt. Hence there are one to one correspondence between syndromes
and cosets. A minimum weight vector in a coset is called a coset leader and the coset
weight is the weight of a coset leader. The cosets of C are partially ordered by defining
for two cosets C ′ and C ′′ of C, C ′ ≤ C ′′ provided there is a coset leader x′ of C ′ and
a coset leader x′′ of C ′′ such that x′ ≤ x′′. Here for the vectors x′ = (x′1, x

′
2, · · · , x′n)

and x′′ = (x′′1 , x′′2 , · · · , x′′n), x′ ≤ x′′ means that x′′i 6= 0 whenever x′i 6= 0. The coset C ′

is a child of C ′′, and C ′′ is a parent of C ′, provided C ′ ≤ C ′′ and there is no coset D
with C ′ < D < C ′′. An orphan is a coset without any parent.
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Let BCH(t,m) denote the binary Bose-Chaudhuri-Hocquenghem code of primitive
length n = 2m− 1 and design distance δ = 2t+1. We investigate the orphan structure
of the code BCH(3,m) code. The BCH(3,m) code, m ≥ 4, is the null space of the 3
by n matrix H over GF (2m) given by

H =




1 α α2 · · · αn−1

1 α3 α6 · · · α3(n−1)

1 α5 α10 · · · α5(n−1)




where α is a primitive element of GF (2m). The syndrome s of a received word r =
(r0, r1, · · · , rn−1) is s = Hrt = (S1, S3, S5), Sj ∈ GF (2m). The cosets are the set
C(s) = {r : Hrt = s}. Given an arbitrary binary n-tuple a = (a0, a1, · · · , an−1) of
weight ω, the locator polynomial of a is the polynomial of degree ω defined by

σ(X) =
∏

{i:ai 6=0}
(X + αi) = Xω + σ1X

ω−1 + · · ·+ σω.

The roots of the locator polynomial of a indicate the coordinate positions which are
1 in a. There is a one to one correspondence between binary n-tuples and locator
polynomials. A locator polynomial σ(X) =

∏ω
i=1(X + Ai) of degree ω is called an

error locator polynomial with syndrome s provided it is the locator polynomial of a
coset leader of a coset C(s), s = (S1, S3, S5) of weight ω. This implies that Sj =∑ω

i=1 Aj
i , j = 1, 3, 5. We give the relation between the coefficients σi of the locator

polynomial σ(X) and the components Sj of its syndrome, namely S1 = σ1, S3 =
σ1S

2
1 + σ2S1 + σ3 and S5 = σ1S

4
1 + σ2S3 + σ3S

2
1 + σ4S1 + σ5.

We define the syndrome (T1, T3, T5) to be reduced provided that T1 = 0. A coset
with reduced syndorme is called a reduced coset and a coset with T1 6= 0 is called an
unreduced coset. The transform of C(s), s = (S1, S3, S5) is the reduced coset C(t) with
syndrome t, t = (T1, T3, T5) = (0, S3 +S3

1 , S5 +S5
1). Note that two different cosets can

have the same transform. Any coset C(s) of weight 1 has syndrome s = (S1, S
3
1 , S5

1),
and so its transform is the code C(0). Hence if t 6= 0 then C(s) has weight > 1. The
covering radius of a code is the largest weight of orphan. The existence of orphans of
weight less than covering radius complicates the determination of the covering radius
of a code. Let’s start with the following characterization of orphan given by R. A.
Brualdi and V. S. Pless.

Theorem 1.1 Let C ′ be a coset of C with weight ω. Then C ′ is an orphan if and
only if the vectors of C ′ with weights ω and ω + 1 cover all coordinate positions.

Proof We first note that each parent of C ′ is of the form ei +C ′ for some unit vector
ei, 1 ≤ i ≤ n. If the vectors of weight w and w +1 of C ′ cover all coordinate positions,
then the weight of ei + C ′ is either w − 1 or w and hence ei + C ′ cannot be a parent
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of C ′. Now suppose that C ′ is an orphan. If there is a coordinate position j which is
not coverd by any vector of weight w or w + 1 of C ′, then ej + C ′ contains a vector
of weight w + 1 but contains no vectors of weight w, and it follows that ej + C ′ is a
parent of C ′.

Let a coset C ′ of a code C of distance d have weight ω, ω < b(d − 1)/2c. If there
are two vectors u, v in C ′ of weight ω or ω + 1, then the vector u + v is a codeword
and its weight is less than d, contradicting the distance of C is d. Hence such a coset
C ′ cannot be an orphan by theorem 1.1.

Since the distance of BCH(3,m) is 7, all cosets of weight 1 and 2 are not orphans.
Since the maximal coset weight of BCH(3,m) is 5, it is trivial that all cosets of weight
5 are orphans. Hence it remains only to investigate cosets of weight 3 and 4. We note
that a coset of weight 3 has a unique coset leader. We now use the notation σk(X) to
denote a locator polynomial of degree k.

Lemma 1.2 Let σ2k−1(X) =
∏2k−1

i=1 (X + Ai), k ≥ 1, be the locator polynomial
of a vector of a reduced coset C(t). If Lσ2k−1(L) 6= 0 for some L ∈ GF (2m), then
(X +L)σ2k−1(X +L) is a locator polynomial of degree 2k with syndrome t. Conversely,
if σ2k(X) is any even degree locator polynomial with syndrome t and L is one of its
roots, then σ2k(X + L)/X is a locator polynomial of degree 2k − 1 with syndrome t.

Proof Since σ2k−1(X) is a locator polynomial, its roots Ai, i = 1, · · · , 2k − 1 are
distinct nonzero elements of GF (2m). It follows from the condition Lσ2k−1(L) 6= 0 that
L and Ai + L are also distinct and nonzero so that σ2k(X) = (X + L)σ2k−1(X + L)
is also locator polynomial. To show that σ2k(X) has syndrome t it suffices to show
that Lj +

∑2k−1
i=1 (Ai + L)j =

∑2k−1
i=1 Aj

i , j = 1, 3, 5. Since
∑2k−1

i=1 Ai = 0, we also have∑
A2

i = 0 and
∑

A4
i = 0. Hence L +

∑
(Ai + L) =

∑
Ai = 0 and Lj +

∑
(Ai + L)j =∑

Aj
i by expanding (Ai + L)j , j = 3, 5.

Conversely suppose that L is one of the roots of an even degree locator polynomial
σ2k(X). Let A1, · · · , A2k be the roots of σ2k(X) and assume L = A1. Since all
Ai, i = 1, · · · , 2k are nonzero and distinct, L + Ai = A1 + Ai are also distinct and
nonzero. Hence σ2k(X + L)/X is a locator polynomial of degree 2k − 1. Since Lj +∑2k

i=2(Ai)j = 0, j = 1, 2, 4

2k∑

i=2

(Ai + L)j =
∑

(Ai)j + L(
∑

(Ai)j−1) + Lj−1(
∑

Ai) + Lj

=
∑

(Ai)j + LLj−1 + Lj−1L

=
∑

(Ai)j , j = 1, 3, 5.

Thus σ2k(X + L)/X also has syndrome t.
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Henceforth we denote a binary n- tuple A of weight ω with 1’s in positions i1, i2, · · · , iω
by A = {A1, A2, · · · , Aω} = {αi1 , αi2 , · · · , αiω}.

Corollary 1.3 Any weight 4 vector of weight 3 reduced coset C(t) has the form
{L,A1 + L,A2 + L,A3 + L} for some L ∈ GF (2m), L 6= 0, Ai, i = 1, 2, 3 where
{A1, A2, A3} is the unique coset leader of C(t).

Proof Let σ3(X) =
∏3

i=1(X + Ai) be the error locator polynomial of C(t). For any
nonzero L ∈ GF (2m), if L 6= Ai, i = 1, 2, 3 then Lσ3(L) 6= 0. Hence (X +L)σ3(X +L)
is locator polynomial of degree 4 with syndrome t by Lemma 1.2. This implies that
{L,A1+L,A2+L,A3+L} is a weight 4 vector of C(t). Since the distance of BCH(3,m)
is 7, any two distinct locator polynomials of degree 4 with syndrome t have no common
root. From the converse part of Lemma 1.2 and uniqueness of the coset leader of C(t),
any weight 4 vector of C(t) has this form.

Theorem 1.4 The weight ω̃ of a reduced coset C(t) is either zero or an odd integer
≥ 3.

Proof Because any coset of weight 1 has syndrome s = (S1, S
3
1 , S5

1), S1 6= 0, w̃
cannot be one. Assume that w̃ is positive and even, say w̃ = 2k. Let σ2k(X) be
an error locator polynomial with syndrome t, and let L be a root of σ2k(X). Define
σ2k−1(X) = σ2k(X + L)/X. Then σ2k−1(X) is a locator polynomial with syndrome t
by Lemma 1.2, contradicting w̃ is the weight of C(t).

We get the relation between error locator polynomial of coset C(s) and that of its
transform C(t) from the next theorem which is in [2]T. Berger and V. A. Van Der
Horst. Henceforth we denote a binary n-tuple A of weight ω with 1’s in positions
i1, i2, · · · , iω by A = {A1, A2, · · · , Aω} = {αi1 , αi2 , · · · , αiω}. Two vectors are disjoint
provided their locator polynomials have no common roots.

Theorem 1.5 Let C(s), s = (S1, S3, S5) be a coset of weight ω > 1. Then an
error locator polynomial σ(X) with syndrome s can be obtained from an error locator
polynomial σ̃(X) of its transform by

σ(X) =





σ̃(X), if S1 = 0
σ̃(X)/(X + S1), if S1 6= 0, ω even
σ̃(X + S1), if S1 6= 0, ω odd.

Proof If S1 = 0, then t = s and σ(X) = σ̃(X), so we need only consider S1 6= 0.
Case 1 : ω is even. By Theorem 1.4, ω̃ equals either ω − 1 or ω + 1. Assume that

ω̃ = ω − 1. Then σ̃(S1) cannot equal zero because that implies σ̃(X)/(X + S1) is a
locator polynomial of degree ω̃− 1 = ω− 2 with syndrome s, thereby contracting C(s)
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has weight w. Thus σ̃(X + S1) has distinct nonzero roots and is a locator polynomial.
Therefore σ̃(X + S1) has weight w̃ = w − 1 with syndrome s because we have

w̃∑

i=1

(Ai + S1)j =
∑

(Ai)j + S1(
∑

(Ai)j−1) + Sj−1
1 (

∑
Ai) +

∑
Sj

1

= Tj + Sj
1, j = 1, 3, 5

since (
∑

Ai)j−1 =
∑

Ai = 0 where Ai, i = 1, · · · , w̃ are roots of σ̃(X). This contra-
dicts that C(s) has weight w, so w̃ = w + 1. It follows that σ(S1) 6= 0. Otherwise,
σ(X)/(X +S1) is a locator polynomial with syndrome t and degree w−1, which would
contradict that C(t) has weight w̃ = w + 1. Since we now know that σ(S1) 6= 0 and
w̃ = w + 1, σ̃(X) = (X + S1)σ(X) is an locator polynomial with syndrome t, or
σ(X) = σ̃(X)/(X + S1).

Case 2 : w is odd. By Theorem 1.4, w̃ = w and σ̃(X + S1) is a locator polynomial
with syndrome s and the degree w̃ of σ̃(X + S1) equals w. Thus σ̃(X + S1) is an error
locator polynomial with syndrome s.

Corollary 1.6 No orphan has weight 4.
Proof Let σ(X) be an error locator polynomial of weight 4 coset C(s) with coset

leader {A1, A2, A3, A4} with syndrome s = (S1, S3, S5), S1 6= 0. By Theorem 1.5, an
error locator polynomial σ̃(X) of the transform C(t) of C(s) is σ̃(X) = σ(X)(X +S1).
This means that {S1, A1, A2, A3, A4} is a coset leader of C(t), and C(t) is a parent of
C(s). Thus a coset of weight 4 is not orphan.

Theorem 1.7 All reduced cosets of weight 3 are orphans. Furthermore, such cosets
have exactly (n− 3)/4 weight 4 vectors.

Proof Let C(t) be a reduced coset of weight 3 with coset leader A = {A1, A2, A3}.
For any nonzero L ∈ GF (2m), L 6= Ai, i = 1, 2, 3, L̄ = {L,L+A1, L+A2, L+A3} is a
weight 4 vector in C(t). Since distance is 7, A and L̄ are disjoint. Hence A and weight
4 vectors of C(t) cover all coordinate positions. Therefor, any two distinct weight 4
vectors are also disjoint, so there are exactly (n− 3)/4 weight 4 vectors of C(t).

We define the trace mapping from GF (2m) to GF (2) by

Tr(A) = A + A2 + · · ·+ A2m−1, A ∈ GF (2m).

The following lemma shows the properties of trace mappings which can be found in
[8]F. J. MacWilliams and N. J. A. Solane.

Lemma 1.8 The followings hold:
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(i) Exactly half of the elements A in GF (2m) have Tr(A) = 0 and exactly half have
Tr(A) = 1.

(ii) Tr(A + B) = Tr(A) + Tr(B), A, B ∈ GF (2m).
(iii) Tr(A2i

) = Tr(A), i = 1, · · · , m− 1.

We next obtain sufficient conditions for a weight 3 coset not to be an orphan by using
the trace mapping. [4]E. R. Berlekamp, H. Rumssey and G. Solomon characterized
quadratic equations over fields of characteristic two which have roots and we record
their result in the next lemma.

Lemma 1.9 The quadratic equation, X2 + AX + B = 0, A,B ∈ GF (2m), A 6= 0,
has solutions in GF (2m) if and only if Tr(B/A2) = 0.

Lemma 1.10 Any reduced coset with syndrome (0, 0, T5), T5 6= 0 has weight 5.
Proof Let C(t) has syndrome t, t = (0, 0, T5). Since T1 = 0, C(t) has weight 3 or 5

by Theorem 1.4. Assume that C(t) has weight 3 and let σ̃(X) = X3+σ1X
2+σ2X +σ3

be the error locator polynomial of C(t). we have σ1 = T1 = 0 and σ3 = T3 = 0. Then
σ̃(X) has zero as its root which contradicts that σ̃(X) is a locator polynomial. Hence
C(t) has weight 5.

Lemma 1.11 Assume m is odd. Any reduced coset C(t) with syndrome t =
(0, T3, 0), T3 6= 0 has weight 5.

Proof Since T1 = 0, C(t) has weight 3 or 5 by Theorem 1.4. Assume that C(t)
has weight 3 with coset leader {A1, A2, A3}. Since A1 + A2 + A3 = 0, 0 = T5 =
T3(A1A2 + A2A3 + A1A3) = T3(A2

1 + A2
2 + A1A2). Since T3 6= 0, A2

1A
2
2 + A1A2 = 0

and so A2 is a root of X2 + A1X + A2
1 = 0. By Lemma 1.8, Tr(A2

1/A
2
2) = Tr(1) = 0,

contradicting to that m is odd. Hence C(t) has weight 5.

2. Main Theorems

Theorem 2.1 Let C(t), t = (0, T3, T5) be a reduced coset of weight 3 and C(s), s =
(S1, S3, S5) be a unreduced coset whose transform is C(t). If Tr(T3/S3

1) = 0, then C(s)
is not an orphan.

Proof Let A = {A1, A2, A3} be the coset leader of C(s). Then {A1+S1, A2+A1, A3+
S1} is the coset leader of C(t) by Theorem 1.5. Note that C(s) is not an orphan if
and only if there exists a nonzero L ∈ GF (2m) such that A′ = {A1, A2, A3, L} is a
coset leader of weight 4 coset. Since, by Lemma 1.9 Tr(T3/S3

1) = 0 if and only if
X2 + S1X + T3/S1 = 0 has a solution, there exists a L ∈ GF (2m) such that LS1(L +
S1) + T3 = 0. If L = 0 then T3 = 0, and so C(t) has weight 5 by Lemma 1.10.
Hence L 6= 0. We now show that L 6= Ai, i = 1, 2, 3. Assume that L = A1. Then
A1S1(A1 + S1) = T3 = (A1 + S1)3 + (A2 + S1)3 + (A3 + S1)3 = (A1 + S1)(A2 +
S1)(A3 + S1) = (A1S1 + A1A2)(A1 + S1) implies A2A3 = 0, contradicting A has
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weight 3. Thus A′ = {A1, A2, A3, L} is a weight 4 vector of some coset C(s′), where
s′ = (S1 + L, S3 + L3, S5 + L5). Then the transform C(t′) of C(s′), has syndrome
(0, T3 +LS1(L+S1), T5 +LS1(L3 +S3

1)). Since T3 +LS1(L+S1) = 0, the coset weight
of C(t′), t′ = (0, 0, T5 + LS1(L3 + S3

1)) is 5 by Lemma 1.10. Hence C(s′) has weight
4 by Theorem 1.5. Thus the weight 4 vector A′ is a coset leader of C(s′), and hence
C(s′) is a parent of C(s). Therefore C(s) is not an orphan.

Theorem 2.2 Assume m is odd. Let C(t), t = (0, T3, T5) be a reduced coset of
weight 3. There exists (n − 7)/2 weight 3 unreduced cosets whose transform is C(t),
and they are not orphans. Furthermore, there are at least n(n− 1)(n− 7)/12 weight 3
cosets which are not orphans.

Proof Let A = {A1, A2, A3} be the coset leader of C(t). By Theorem 1.5 and the
uniqueness of the coset leader of C(t), for any nonzero L ∈ GF (2m) with L 6= Ai, the
coset C(l), l = (L, T3+L3, T5+L5) has weight 3 with coset leader {A1+L, A2+L,A3+
L} and C(t) is a transform of C(l). Hence we want to count L such that Tr(T3/L3) = 0,
L 6= 0, A1, A2, A3. Since m is odd, n = 2m − 1 is not divisible by 3. This means α3 is
a primitive element whenever α is a primitive element of GF (2m). Thus, for the given
T3, {T3/L3 | L ∈ GF (2m), L 6= 0} is the set of all nonzero elements of GF (2m). By (i)
in Lemma 1.8, there are exactly (n− 1)/2 nonzero L such that Tr(T3/L3) = 0. But,

Tr(T3/L3) = Tr((A3
1 + A3

2 + A3
3)/A

3
1) = Tr(A1A2A3/A

3
1)

= Tr((A2
3 + A1A3)/A2

1) = Tr((A3/A1)2 + Tr(A3/A1)

= Tr(A3/A1) + Tr(A3/A1) = 0,

using A1 + A2 + A3 = 0 and (ii), (iii) in Lemma 1.8. We conclude that if L =
Ai, i = 1, 2, 3 then Tr(T3/L3) = 0, but coset C(l), l = (L, T3 + L3, T5 + L5) does not
have weight 3. Therefore there are (n + 1)/2 − 4 = (n − 7)/2 weitght 3 unreduced
cosets whose transform is C(t) and they are not orphans by Theorem 2.1. We now
count the number of weight 3 reduced cosets with syndrome (0, T3, ∗) for some fixed
T3 ∈ GF (2m) and arbitrary ∗ ∈ GF (2m). This is equivalent to counting the number
of coset leaders of these cosets since each coset has only one coset leader. Let C(t)
be a weight 3 reduced coset with syndrome (0, T3, ∗) and let {A1, A2, A3} be the coset
leader of C(t). Then, by Lemma 1.9, T3 = A3

1 + A3
2 + A3

3 = A3
1 + A3

2 + (A1 + A2)3 =
A1A2(A1 + A2) (or A2A3(A2 + A3)). Therefore

{A1, A2, A3} is the coset leader of a coset C(t), t = (0, T3, ∗)
if and only if Ai is a root of X2 + AjX + T3/Aj = 0, i 6= j i, j = 1, 2, 3

if and only if Tr(T3/A
3
1) = Tr(T3/A

3
2) = Tr(T3/A

3
3) = 0.

We have already noted that there are (n − 1)/2 nonzero L ∈ GF (2m) such that
Tr(T3/L3) = 0, so there are 1/3((n − 1)/2) weight 3 reduced cosets with syndrome
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(0, T3, ∗) for each nonzero T3 ∈ GF (2m). Therefore we have at least n(1/3((n −
1)/2)((n − 7)/2) = n(n − 1)(n − 7)/12 weight 3 unreduced cosets which are not or-
phans.

Theorem 2.3 Assume m is an even. There are at least nβ(β − 1) + (n/8)(n −
2β)(n−2β−5) weight 3 unreduced cosets which are not orphans where β is the number
of nonzero elements αj ∈ GF (2m) such that the trace of αj is zero and j ≡ 0 (mod 3).

Proof Let C(t), t = (0, T3, T5) be a weight 3 reduced coset with coset leader A =
{A1, A2, A3}. Since m is even, n = 2m − 1 is divisible by 3. So { T3/L3 | L ∈
GF (2m), L 6= 0} is not the set of all nonzero elements of GF (2m). To count the
number of nonzero L such that Tr(T3/L3) = 0, define β to be the cardinality of Ψ
where Ψ = {αj ∈ GF (2m) | αj 6= 0, T r(αj) = 0, j ≡ 0 (mod 3)}. Let T3 = αj for
some j. We separate the remainder of the proof into two cases according to whether j
is divisible by 3 or not.

Case 1 : Let T3 = α3k, for some k. Then if T3/L3 = R for some R ∈ Ψ, then
T3/(Lαn/3)3 = T3/(Lα2n/3)3 = R and L ∈ GF (2m). Hence, by the same argument in
Theorem 2.2, there exist 3β nonzero L such that Tr(T3/L3) = 0, and we have 3β − 3
weight 3 unreduced cosets whose transform is C(t) and by Theorem 2.1 they are not
orphans. Also we have β weight 3 reduced cosets with syndrome (0, T3, ∗) for some
fixed T3 ∈ GF (2m), and there are n/3 nonzero elements of GF (2m), T3 = α3k for some
k. This means that there are at least (n/3)(β)(3β − 3) = nβ(β − 1) weight 3 cosets
which are not orphans.

Case 2 : Let T3 = αk, k = 1, 2 (mod 3). Exactly half of the elements in GF (2m)
have trace zero, so we have (n − 1)/2 − β = 1/2(n − 1 − 2β) nonzero R = αj such
that Tr(R) = 0, j is not divisible by 3. Note if j ≡ 1 (mod 3), then 2j ≡ 2 (mod 3).
Thus, there are (n− 1− 2β)/4R such that Tr(R) = 0, j ≡ 1 or 2 (mod 3) respectively.
Since there exists L ∈ GF (2m) such that T3/L3 = R ∈ Ψ if and only if k ≡ j (mod 3),
there are weight 3 unreduced cosets whose transform is C(t) and ((n− 1− 2β)/4)− 3
weight 3 reduced cosets with syndrome (0, T3, ∗) for some fixed nonzero T3 ∈ GF (2m).
Therefore we have at least 2[(n/3)((n−1−2β)/4)((3(n−1−2β)−12)/4)] = (n/8)(n−
1− 2β)(n− 5− 2β) weight 3 unreduced cosets which are not orphans.

From Case 1 and Case 2, there are at least nβ(β−1)+(n/8)(n−2β−1)(n−2β−5)
weight 3 unreduced cosets which are not orphans.

Theorem 2.4 Assume that m is odd. Let C(t), t = (0, T3, T5) be a reduced coset of
weight 3 and C(s), s = (S1, S3, S5) be an unreduced coset whose transform is C(t). If
Tr(T5/S5

1) = 0, then C(s) is not an orphan.
Proof Let {A1, A2, A3} be the coset leader of C(t). Then {A1+S1, A2+S1, A3+S1} is

the coset leader of C(s). Since Tr(T5/S5
1) = 0, by Lemma 1.9, X2 + S2

1X + T5/S1 = 0
has roots P, Q ∈ GF (2m) such that P + Q = S2

1 and PQ = T5/S1. Therefore
X4 +S3

1X +T5/S1 = (X2 +S1X +P )(X2 +S1X +Q) (∗3) for P, Q ∈ GF (2m). Since
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P + Q+ = S2
1 , T r(P/S2

1) + Tr(Q/S2
1) = Tr(1) = 1. Thus only one of Tr(P/S2

1) and
Tr(Q/S2

1), say Tr(P/S2
1), equals to zero. By Lemma 1.9, there exists L ∈ GF (2m) such

that L is a root of X2 +S1X +P = 0. From (*3), L is a root of X4 +S3
1X +T5/S1 = 0,

and so S1L
4 + S4

1L = S5
1 + L5 + (S1 + L)5 = T5. Hence {S1, L, S1 + L} is coset leader

of weight 3 reduced coset C(p) with syndrome (0, P, T5) where P = S1L(S1 + L). By
Lemma 1.10, a coset C(p′) = C(t) + C(p) with syndrome (0, T3 + P, 0) has weight 5.
Now Ā = {A1, A2, A3, S1, L, S1 + L} is a vector of C(p′) has a vector of weight less
than 5, contradicting to that C(p′) has weight 5. This Ā is a vector in C(p′) of weight
6. Thus {A1 + S1, A2 + S1, A3 + S1, L, L + S1} is a weight 5 vector in C(p′) and is a
coset leader. Since any descendent of coset leader is also coset leader of some coset,
{A1 +S1, A2 +S1, A3 +S1, L} is a coset leader of some coset which is a parent of C(s).
Therefore C(s) is not an orphan.

We have shown that many weight 3 unreduced cosets are not orphans. We conjecture
that all weight 3 unreduced cosets are not orphans. We prove that this conjecture for
m = 4 and 5.

Lemma 2.5 Let C(s), s = (S1, S3, S5) be a weight 3 unreduced coset. For each
weight 4 vector A = {A1, A2, A3, A4} of C(s) with Ai 6= S1, i = 1, · · · , 4, we have
Ā = {A1 + S1, A2 + S1, A3 + S1, A4 + S1} is also a weight 4 vector of C(s).

Proof Since the Ai are distinct nonzero elements different from S1, the elements Ai+
S1 are nonzero and distinct. We calculate

∑4
i=1(Ai+S1)j =

∑4
i=1 Aj

i +S1(
∑

(Ai)j−1)+
Sj−1

1 (
∑

Ai) +
∑

Sj
1 =

∑
Aj

i , since
∑

Aj−1
i = Sj−1

1 , j = 1, 3, 5.

Corollary 2.6 Any weight 4 coset C(s) has at least two coset leaders.

Lemma 2.7 A locator polynomial of a weight 4 vector of the weight 3 unreduced
coset C(s) and a locator polynomial of weight 4 vector of the transform C(t) of C(s)
have at most one common root.

Proof Let Q = {Q1, Q2, Q3, Q4} and P = {P1, P2, P3, P4} be weight 4 vectors in
C(s) and C(t) respectively. Without loss of generality, assume that Q1 = P1 and
Q2 = P2. We claim that {Q3, Q4, P3, P4} ∈ C(s′), s′ = (S1, S

3
1 , S5

1), a coset of weight
1. This follows since Qj

3 + Qj
4 = Sj + Qj

1 + Qj
2 = Sj + P j

1 + P j
2 = Sj + Tj + P j

3 + P j
4 =

Sj
1 + P j

3 + P j
4 , j = 1, 3, 5. Therefore {S1, Q3, Q4, P3P4} is a codeword, contradicting

the fact that the minimum distance of BCH(3,m) is 7.

Lemma 2.8 Suppose that the locator polynomial σ(X) of weight 4 vector of weight 3
unreduced coset C(s) has one common root with the locator polynomial σ̃(X) of weight
4 vector of its transform C(t). If S1 is neither a root of σ(X) nor σ̃(X), then σ̃(X)
cannot have a common root with σ(X+S1), where σ(X+S1) is also a locator polynomial
of weight 4 vector of C(s).
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Proof Let A = {A1, A2, A3} be a coset leader of C(t), and let P = {P1, P2, P3, P4}
and Q = {Q1, Q2, Q3, Q4} be weight 4 vectors of C(t) abd C(s) respectively. Sup-
pose that the locator polynomial σ̃(X) of P has one common root with the locator
polynomial σ(X) of Q, say P1 = Q1. We can say that P is of the form Pi+1 =
P1 + Ai, i = 1, 2, 3 since {P1, P1 + A1, P1 + A2, P3 + A3} is a weight 4 vector of C(t)
and any two distinct weight 4 vectors are disjoint. By Lemma 2.5 and Qi 6= 0, Q̄ =
{Q1 + S1, Q2 + S1, Q3 + S1, Q4 + S1} is a weight 4 vector of C(s) and σ(X + S1) is the
locator polynomial of Q̄. So suppose that P and Q̄ have a common nonzero position.
If P1 = Qi + S1 for some i, then Q1 + Qi = S1, since P1 = Q1. This contradicts the
fact that the weight of Q is 4. Without loss of generality, assume that P2 = Q2 + S1.
Then Q2 + S1 = P2 = P1 + A1 = Q1 + A1, Q1 + Q2 + S1 = Q3 + Q4 = A1. So we have
Q3 = Q4 +A1. Hence {Q4, Q4 +A1, Q4 +A2, Q4 +A3} = {Q4, Q3, Q4 +A2, Q4 +A3} is
weight 4 vector in C(t) which has two common nonzero positions with Q, contradicting
Lemma 2.7. Hence P cannot have a common nonzero position with Q.

Theorem 2.9 No weight 3 unreduced coset is an orphan for m = 4 and 5.
Proof Let C(s) be weight 3 coset and let C(t) be its transform with coset leader

A = {A1, A2, A3}. Then {S1, A1, A2, A3} is a weight 4 vector of C(s) since S1 6= 0, Ai.
We claim that this is the only weight 4 vector of C(s). To get a contradiction, assume
that Q = {Q1, Q2, Q3, Q4}, Qi 6= S1, Aj i = 1, · · · , 4; j = 1, 2, 3 is another weight
4 vector of C(s). Then Q̄ = {Q1 + S1, Q2 + S1, Q3 + S1, Q4 + S1} is also weight 4
vector of C(s) by Lemma 2.5. Define P (i) = {Qi, Qi + A1, Qi + A2, Qi + A3} and
P̄ (i) = {Qi + S1, Qi + S1 + A1, Qi + S1 + A2, Qi + S1 + A3} for i = 1, · · · , 4. Then
P (i) and P̄ (i) are weight 4 vectors of C(t). It is sufficient to show that these 8 weight
4 vectors are distinct since C(t) has only (n − 3)/4 < 8, (m = 4, 5) weight 4 vectors
by Theorem 1.7. If P (i) = P (j), i 6= j then we have Qi = Qj + Ak for some k, so
the locator polynomial of P (j) has two common roots with locator polynomial of Q,
contradicting Lemma 2.7. Thus we have P (i) 6= P (j), and P̄ (i) 6= P̄ (j) for i 6= j.
If P (i) = P̄ (i) then Ai = S1, contradicting C(s) has weight 3. Now assume that
P (i) = P̄ (j), i 6= j, say i = 1, j = 2. Then Q1 = Q2 + S1 + Ak for some k. This
implies Q3 = Q4 + Ak, so the locator polynomial of P (4) has two common roots with
Q contradicting Lemma 2.7. Thus all these weight 4 vectors are distinct, contradicting
Theorem 1.7. Hence C(s) has only one weight 4 vector and so is not an orphan by
Theorem 1.1.
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